DSpace DSpace 日本語

AIT Associated Repository of Academic Resources >
A.研究報告 >
A1 愛知工業大学研究報告 >
2.愛知工業大学研究報告 .A(1976-2007) >
37号 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11133/2017

Title: 積分の平均値の定理の拡張
Other Titles: Generalizations of the Mean Value Theorem of Integral
Authors: 樋口, 功
Issue Date: 31-Mar-2002
Publisher: 愛知工業大学
Abstract: Let f(x) be continuous on the closed interval [a, b]. By the mean value theorem of integral, there exists a point ξ on [a, b] satisfying [numerical formula] In other word, we can find a point ξ∈[a, b] such that the straight line l defined by y=f^^~(x)=f(ξ) passing the point (ξ, f(ξ) and Parallel to the x-axis satisfies y = f^^~(x) [numerical formula] The aim of the present paper is to generalize the above mean value theorem of integration. First, we shall prove the following
URI: http://hdl.handle.net/11133/2017
Appears in Collections:37号

Files in This Item:

File Description SizeFormat
紀要37号A(P7-14).pdf407.11 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback