DSpace DSpace 日本語

AIT Associated Repository of Academic Resources >
A.研究報告 >
A1 愛知工業大学研究報告 >
2.愛知工業大学研究報告 .A(1976-2007) >
35号 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11133/1997

Title: ランダムな分布点での関数値に基づく一般化されたSimpson公式について
Other Titles: ランダム ナ ブンプ テン デノ カンスウチ ニ モトズク イッパンカ サレタ Simpson コウシキ ニツイテ
On the generalized Simpson's formula based on the function-values at random points
Authors: 樋口, 功
Issue Date: 31-Mar-2000
Publisher: 愛知工業大学
Abstract: The integration formulas of Newton-Cotes are given by the function-values at equally spaced abscissas. The Gaussian integration formulas are based on the values at nonequally spaced points distributed regularly by the orthogonal polynomials. On the other hand, it occurs often when we treat with the experimental data, that the calculation of integral must be done by using the values at random points in the interval. In this paper, we shall first establish the generalized Simpson's formula based on the data at irregularly distributed points. Next, we shall give the concrete form of the best formula having the highest order of accuracy in all the 3-points numerical integration formulas.
URI: http://hdl.handle.net/11133/1997
Appears in Collections:35号

Files in This Item:

File Description SizeFormat
紀要35号A(P23-31).pdf413.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback