DSpace DSpace 日本語
 

AIT Associated Repository of Academic Resources >
A.研究報告 >
A1 愛知工業大学研究報告 >
2.愛知工業大学研究報告 .A(1976-2007) >
21号 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11133/1840

Title: 正則局所環の高次微分論的特徴付けについての注意
Other Titles: セイソク キョクショカン ノ コウジ ビブンロンテキ トクチョウズケ ニツイテ ノ チュウイ
Remarks on High Order Differential Theoretic Characterization of Regular Local Rings
Authors: 荒木, 淳
ARAKI, Atsushi
Issue Date: 31-Mar-1986
Publisher: 愛知工業大学
Abstract: In this paper, we assume that R is a reduced noetherian local ring with coefficient field K of characteristic 0. For any positive integer n, we shall define the module of n-order differentials of R and will be denoted by D^n_K(R). The main result of this paper is to prove that R is a regular local ring if and only if, for any positive integer n, D^n_K(R) is a formally projective R-module. The case n=1 was proved in [1].
URI: http://hdl.handle.net/11133/1840
Appears in Collections:21号

Files in This Item:

File Description SizeFormat
紀要21号A(P19-22).pdf343.87 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback