AIT Associated Repository of Academic Resources >
A.研究報告 >
A1 愛知工業大学研究報告 >
2.愛知工業大学研究報告 .A(1976-2007) >
21号 >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11133/1840
|
Title: | 正則局所環の高次微分論的特徴付けについての注意 |
Other Titles: | セイソク キョクショカン ノ コウジ ビブンロンテキ トクチョウズケ ニツイテ ノ チュウイ Remarks on High Order Differential Theoretic Characterization of Regular Local Rings |
Authors: | 荒木, 淳 ARAKI, Atsushi |
Issue Date: | 31-Mar-1986 |
Publisher: | 愛知工業大学 |
Abstract: | In this paper, we assume that R is a reduced noetherian local ring with coefficient field K of characteristic 0. For any positive integer n, we shall define the module of n-order differentials of R and will be denoted by D^n_K(R). The main result of this paper is to prove that R is a regular local ring if and only if, for any positive integer n, D^n_K(R) is a formally projective R-module. The case n=1 was proved in [1]. |
URI: | http://hdl.handle.net/11133/1840 |
Appears in Collections: | 21号
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|