物体の三次元計測に関する研究

Study of three-dimensional measurment of objects

山田	諄*	,	山王	祐登**
Jun	YAMADA	,	Masato	SANO

Abstract In three-dimensional measurment, equipments with CCD camera have generally been used. But it takes considerable time to measure a three-dimensional object. Then we made up the three-dimensional measurment device based on laser trigonometry. This device is composed of a laser diode, a polygonal mirror, a twodimensional PSD and lenses. The measurment error is below $\pm 200 \,\mu$ m.

1. はじめに

近年、製品の歩留まり向上の為、製造過程に於い て長さや幅などの計測が行われてきた。最近では、 さらに製品の形状計測が重要になってきており、C CDカメラを使ったものなどがある。しかし、複雑 な画像処理を伴うため測定時間が長時間になり、測 定装置自体が高価になる等の欠点がある。

我々は三角測量法を用いて、これらの欠点を解消 したインプロセス計測が可能なシステムを製作し、 その性能を評価した。三角測量法については古くか ら知られており、カメラのオートフォーカスなどに 利用されている。これは距離計測に於ける最も基本 的な原理で極めて安定な距離検出が可能であり、最 近の光デバイスの発達により半導体レーザと様々な 受光素子を用いた測定装置が実現されている。今回 は、受光素子として二次元の半導体位置検出素子 (PSD)を使用し、三角測量法の原理で三次元計 測を行った。これにより、複雑な後処理の全く必要 ない測定速度の速い計測システムができた。

2. 三角測量法の原理

*愛知工業大学 電子工学科 **同大学院生

図1 一次元計測原理図 I

まず、三角測量法を利用した一次元計測の原理図 を図1に示す。投光側は半導体レーザと投光レンズ、 受光側は投光レンズの光軸に平行な光軸を持つ受光 レンズと、このレンズに平行に置かれた一次元PS Dで構成されている。レーザ光を投光レンズで絞っ て測定物に照射すると、物体表面上の一点に当たっ て散乱し、その一部の光が受光レンズを通り二次元 PSD受光面上の一点に集光する。図1では、物体 の測定点AがPSD受光面上の点aに結像する。こ こで、受光レンズの中心Lから投光レンズの光軸に 垂線を下ろした点を点0とすると、受光レンズの中 心から点0までの長さ0Lと受光レンズからPSD までの長さ0Lは装置の設計時に分かっているので、 PSD受光面上の光スポットの移動量0aを検出す れば△0ALと△0aLとの相似関係

$$\overline{OA} = \frac{\overline{OL}}{\overline{Oa}} \cdot \overline{OL} \cdots (1)$$

により点0から測定点Aまでの絶対距離0Aが求ま る。次に、測定点が点Bに移動するとPSD上の光 スポットも点bに移動し、同様に三角形の相似の関 係を用いると0Bの距離が得られる。この0Bから 0Aを引き算すれば物体の移動量ABを求めること ができる。このように、三角測量法では物体までの 距離や変位を簡単な計算で求めることが可能である。

さらに、立体角を大きくするために受光レンズを 図2のように傾けた。これは、立体角が大きいと受 光できる散乱光量が多くなり測定結果に誤差を生じ にくくなるためである。このレンズの位置と傾きは 次のように決める。まず、光軸上の一点0が受光レ ンズによってPSD受光面上の点oに結像するよう に、式(2)のレンズの公式を満たす位置に受光レ ンズとPSDの中心位置を決める。

$$\frac{1}{OL} + \frac{1}{oL} = \frac{1}{f} \quad \cdots \quad (2)$$

この式で、fは受光レンズの焦点距離、OL, oL はそれぞれ半導体レーザ光光軸、及び、PSD受光 面と受光レンズの光軸との交点O, oから受光レン ズの中心Lまでの長さである。次に、PSD受光面 をレーザ光の光軸と受光レンズ面との交点Tと点o を通る直線oTに沿うように傾ける。受光側をこの ように配置することによりシャインプルーグの条件 が満たされ、レーザ光の光軸(直線OT)上の全て の点が受光レンズによりPSD面(直線oT)上で 結像される。ここでレーザ光軸上での物体変位Dは、 PSD受光面上の光スポット変位dに対応し、式 (3)で表される。

図2 一次元計測原理図Ⅱ

$$d = \frac{\{f^2 \cdot \cos^2 \alpha + (S \cdot \cos \alpha - f)^2 \cdot \sin \alpha\}^{1/2}}{(S \cdot \cos \alpha - f) - D \cdot \cos \alpha}$$
$$\cdot \frac{f \cdot D}{S \cdot \cos \alpha - f} \quad \cdots \quad (3)$$

αは半導体レーザの光軸と受光レンズの光軸とが成 す角∠TOo、Sは直線OTの長さ、Dは測定物の 移動量、dはDに対するPSD面上での光スポット 移動量である。このようにシャインプルーグの条件 を満足すると、測定物から見た立体角が大きくなり 散乱光を有効に受光できる上、レーザ光光軸上の全 測定点が受光面上に結像されるので精度の良い測定 ができる。

最後に、三角測量法を用いた三次元計測の原理に ついて述べる。まず、先ほど述べた一次元計測を応 用して二次元計測を行う。レーザ光を走査させるこ とと、二軸方向を測定することができる二次元PS Dを用いることの他は、一次元の場合と同じ測定原 理である。図3に原理図を示す。レーザ光をポリゴ ンミラーと投光レンズを使って上から下へ走査させ ていくと、それに伴い測定物に上から下へレーザ光 が照射され、表面で次々に散乱する。それらの散乱 光は受光レンズにより二次元PSD上に時間を異に して次々に集光されていく。各々の入射光について 変位をそれぞれ求めることにより測定物表面の二次 元形状が得られる。そして、測定物を図中の矢印方 向に一定間隔移動させ、同様の測定を繰り返し行う ことによって得られた物体形状を一つにまとめると 物体の三次元形状を表すことができる。

ここで、これからの説明のため、図3に示すよう に各軸方向を次のように定める。レーザ光の光軸方 向をZ軸方向、レーザ光の走査方向をX軸方向、両

軸に対して直角な方向をY軸方向とする。

二次元半導体位置検出素子
(PSD: Position Sensitive Device)

PSDはシリコンフォトダイオードを利用した光 スポットの位置検出用センサであり、一次元位置検 出用と二次元位置検出用の二種類ある。二次元PS Dは、一次元PSDに固定されている一対の電極に 対して、もう一対の電極を垂直に取り付けて二軸方 向の位置検出を可能にしたものである。今回使用し た二次元PSDは改良表面分割型で、表面分割型の 受光面と電極に改良を加えたPSDである。これは 低暗電流、高速応答、バイアス印加が容易であるな どの特徴に加え、周辺部での歪が大幅に改善されて おり、位置検出誤差が両面分割型と同様に小さい。

4. 三次元計測システム

三角測量法の原理に基づいて三次元測定装置及び 計測システムの製作を行った。測定システムのブロ ック図を図4に示す。計測システムは測定装置、直 流安定化電源、移動ステージ、デジタルオシロスコ ープ、パーソナルコンピュータ、プロッターで構成 されている。移動ステージ、デジタルオシロスコー プ、パーソナルコンピュータ、及び、プロッターは それぞれGP-IBでパーソナルコンピュータで制 御されている。尚、LD光を連続動作させているた め外乱光の影響を受けやすいので、測定は暗箱の中 で行った。

製作した測定装置を図5に示す。測定装置は投光 器、投光レンズ、受光レンズ、受光器から成り、装 置の大きさは240mm×200mm,高さ150 mmであり、従来からある三次元計測装置に比べて パーソナルコンピュータ

図4 計測システムのブロック図

小型である。投光器は半導体レーザ、単レンズ、ポ リゴンミラーで構成されている。今回使用した半導 体レーザは出力3mW,発振波長781nmの低ノ イズレーザで、一般にCDなどに使用されているも のである。ポリゴンミラーとは多面体の回転ミラー であり、振動鏡と並んでレーザ光を高速で走査する 用途に用いられている。今回はミラー面が六面で、 回転速度が1000rpmのポリゴンミラーを用い た。また、受光器は有効受光面積12mm×1.2m m,位置検出誤差±250µmの改良表面分割型二 次元PSDと演算回路で構成されている。

この測定装置の動作原理を説明する。半導体レー ザ(LD)から発せられる光は広がりを持っている ので、焦点距離5mm,直径5mmの微小単レンズ を使って3mm×1mmの小さいビーム径を持つ平 行光にする。このLDと単レンズはアルミ製の円筒 に組み付けられ、ポリゴンミラーの上部に取り付け てある。平行にしたLD光を回転しているポリゴン ミラーに上方から照射すると、ミラーによりX軸方 向に120°の角度で扇形にミラー前方へ走査され る。その後、それらの光は焦点距離81.5mm, 直径50mmの投光用単レンズを通る。LD光のポ リゴンミラー上での反射点が投光レンズの焦点位置 に置いてあるので、Z軸に平行でX軸上50mmの 範囲を走査する光に変換される。

試料の物体はY軸方向、Z軸方向に移動可能なス テージに垂直に取り付けられた試料台の上に取り付 けてある。試料表面で散乱した光の内、焦点距離3 0mm,直径30mmの受光用単レンズを通った光 はPSD受光面上に集光される。PSDに光が入射 するとその光に応じた電流が出力される。この出力 電流を演算回路に通すことにより、入射光スポット 位置に比例した電圧に変換される。さらに、後段に 接続されているデジタルオシロスコープで波形の平 均処理を4回行って二次元波形を得る。この二次元 波形の測定を移動ステージをY軸方向に一定間隔づ つ動かしながら行い、得られた複数の波形にコンピ ュータで陰線処理を施すことにより測定物表面の三 次元形状が描かれる。

5. 演算回路

PSD上の光スポットの位置に比例した出力を得 るためには簡単な演算を行う必要がある。この演算 は簡単なアナログ回路で実現できる。二次元PSD の後段に接続されているこの演算回路図を図6に示 す。三段のオペアンプと割算算回路で構成された簡 単な回路である。この回路の動作を説明すると、ま ず、PSDの受光面に入射した光スポット位置に応 じてPSDの四ヵ所の電極から電流が出力される。 これらの電流をプリアンプOP1~OP4で電圧に それぞれ変換し、X₁、X₂、Y₁、Y₂の出力を得る。 次に、PSD上の隣合った電極出力どうしであるX₂ とY₁をOP5で、X₁とY₂をOP6それぞれ足し 合わせる。この二つの出力 $X_1 + Y_2$ 、 $X_2 + Y_1$ を P7で加算した結果 $(X_1 + Y_2) + (X_2 + Y_1)$ を 分母、OP8で除算した結果 $(X_1 + Y_2) - (X_2 + Y_1)$ を 分子として割算回路ICに入力する。そうす ると、式(4)に示すように受光面上の光スポット の位置を検出することができる。

$$\frac{(X_1 + Y_2) - (X_2 + Y_1)}{(X_1 + Y_2) + (X_2 + Y_1)} = \frac{Z}{L} \cdot \cdot (4)$$

ここで、LはPSDの一辺の1/2の長さ、ZはP SDの中心位置から入射光の中心位置までのZ方向 距離である。この回路では最終段において全受光量 で割算を行っているので、PSDへ入射する光の量 と無関係に位置検出ができる。しかし、入射光量が 多ければPSDからの出力電流も増してオペアンプ や割算回路における演算誤差が少なくなり精度が向 上する。

6. 測定結果

6.1 校正曲線の測定

測定装置の出力電圧から物体の移動距離を知るた めに校正曲線を求める実験を行った。移動ステージ に垂直に取り付けられた試料台に試料の白い紙をた るまないように貼り付けた。この状態で一回の測定 を行うと、図7のような波形がデジタルオシロスコ ープに得られる。この波形は測定物を輪切りにした 形を表している。波形の両肩がなだらかになってい る部分は、集光された光スポットの一部分がPSD 受光面からはみ出してしまい、演算回路で演算誤差 を生じた箇所である。この図7と同様の出力波形を、 乙軸に沿ってステージを一定間隔づつ投光レンズか

5 τ 35 У 5 ۲ 2 **ب** ĸ У ÷ <u>,</u>C1 \$ タイムレ ンジ [µS/div] 500 図7 出力波形 10 $\left(\begin{array}{c} \\ \end{array} \right)$ 田 瞗 Ł H 5 -20 -100 10 乙軸方向の距離(mm) 図8 校正曲線

ら遠ざかる方向に移動させながら測定していき、そ の出力変化を調べる。ステージの移動は備え付けの マイクロメーターにより手動で動かした。

このようにして得られた校正曲線を図8に示す。 ここで、LD光光軸と受光レンズ光軸の交点0を測 定位置の基準点と定め、点0よりも投光レンズ側は "-"符号を付けて表してある。このグラフを見る と、点0から前方-20mm、後方15mmの間で Z軸変位に対する出力が、一定の傾きを持った直線 になった。これより、試料の測定可能な範囲は35 mmであことが分かる。この直線性の良い範囲内で 測定を行えば、出力電圧の逓倍が実際のZ軸上変位 を表しているので一切の後処理が必要ないので、直 接、距離の測定ができる。また、この範囲内の校正 曲線のばらつきは距離に直すと200µmの誤差で あった。その中でも-20mmから0mmの間はば らつき誤差が100µmに収まった。この装置では

図10 先端を二股に加工した半円錘形白色ゴム

受光レンズが単レンズなので、乙軸方向の測定範囲 が35mmであればX軸方向の測定範囲も同じく3 5mm程度となる。

6.2 物体表面の三次元計測

この装置によって実際に物体の表面形状を測定し 三次元表示を行った。Y軸に沿ってステージを一定 間隔移動させながら測定して得られた図7の様な二 次元波形をパーソナルコンピュータで陰線処理をし てプロッターにより物体表面の三次元形状を描く。

プロッターで物体表面の三次元像を描いた例を図 9に示す。白色ゴムを半円錐状に加工したものを試 料に用いた。図より円錐状になっている物体が見て 取れる。波形に小さな凹凸が表れているが、これは、 試料の加工を手作業で行ったために生じた試料表面 の凸凹であると思われる。

もう一例を図10に示す。今度は半円錐状に加工

した白色ゴムを、さらにその先をM字型に深く削っ て二股にしたものを使用した。この物体の形状はY 軸方向についてほぼ左右対称であるが、出力された 物体形状は対称になっていない。これは、受光レン ズから見て影になる部分が測定できないために生じ る誤差である。

6.3 誤差の測定

先ほど得られた校正曲線を使って求めた測定値と、 接触式マイクロメータで測った物体の大きさ(実寸 値)とを比較し、精度を求めた。測定物には白い板 を使用した。この板の厚みはあらかじめノギスで測 っておき、ステージに取り付けられた白い試料台に 板を固定する。Z軸方向に一定間隔づつステージを 移動させて、各点での物体の大きさを測定する。

実寸値2.95mmと4.70mmの板を測った 結果を図11に示す。測定範囲内での誤差は±25 0μmに収まっている。+100μmの補正を加え ると、ほぼ±150μm以内の精度となる。

7.まとめ

今回、工場内におけるインプロセスの物体形状計 測を目指し、三角測量法の原理を用いて測定装置を 製作した。安定した距離検出が可能なこの三角測量 法を利用した三次元計測は、すでに受光器にCCD カメラ等を使用したもの等があるが、これらの装置 は高価であり、複雑な画像処理を必要とするなどの 欠点がある。しかし、本システムでは出力波形が距 離に比例しているので、面倒な計算処理を行う必要

がなく計測時間が短い。この測定速度はポリゴンミ ラーの回転速度のみに依存しているので、ミラーの 回転速度を速くすると、高速の物体計測ができる。 さらに、光学系が簡単で、装置自体が安価である。 このような特徴を有する本システムは、工場内のベ ルトコンベアー上を流れてくる物体形状のオンライ ン計測に適している。今回は測定範囲が35mm程 度と狭かったが、投光レンズにレンズ径の大きなも のを用いれば、精度は多少悪くなるけれども測定範 囲を広げることが可能である。

今後は、レーザ光に変調をかけて外乱光の影響を なくし、精度の向上を図りたい。

(受理 平成6年3月20日)