構造部材の塑性ヒンジ機構を考慮した 構造物の応答解析(その2)

小高昭夫

Non-Linear Response Analysis of Frames in Consideration of Plastic Hinged Mechanism Subjected to Earthquake Ground Motions. Part 2.

Teruo ODAKA

In this paper, the analytical method is developed to investigate the behaviors on non-linear response of framed structures subjected to earthquake ground motions under the occurrence of plastic hinges in structural members of which framed structures is formed.

And the results of numerical analysis in the two cases of frame structural models is presented.

The first case of model is in case of which changed the design in structural members on former model of the R. P. C. structure.

The second model is the structural model with shear wall, and is also considered the swaying and rocking vibration in the foundation.

It is evident that the energy absorption owing to hysteresis loop of plastic hinged mechanism, and the behavior of structural models for the rocking and swaying vibration etc..

1. 序

本論文は前に発表された研究の続編で,解析例として 2例が示され考察される。解析例(1)として,前論文^{(1),(2)}に 示された R.P.C.(鉄筋コンクリート・ブレキャスト構造) 11層の建物において,設計用ベースシャー係数の値を大 きくして設計変更した場合に対して,前論文と比較,検 討される。解析(2)として地盤の影響および,壁体のせん 断降伏を考慮した場合について,H.P.C.(鉄骨(H型鋼)・ プレキャスト構造)9層の建物が示される。

2. 解析例(1) (R.P.C. 11層建物):

2.1 設計変更の概要:前論文に示された解析例に おいて,設計変更された内容は次のようである。

- (1) 設計用ベースシャー係数をC_{BU}=0.35(前論文で はC_{BU}=0.25)とされる。
- (2) 柱・梁の断面の大きさ、スパンおよび階高は変更 されないが、ベースシャー係数を C_{BU} =0.35とする ことにより、断面の鉄筋量が多くなる。
- (3) 建物重量が僅かながら軽量化され、とくに屋上の 重量がかなり軽減される。
- (2) 2層の柱脚より下層の軀体コンクリート強度が

 $FC = 400 \text{kg/cm}^2 \text{bold}$

(5) 降伏モーメントの算定式が変更された。

解析に供した架構の概要と解析モデルは図1に示される。

2.2 解析における諸量:コンクリートの強度およびヤング係数,鉄筋の強度およびヤング係数等は表1に示される。また建物の重量,断面性能および断面リスト等は表2に示される。

2.3 部材のひび割れモーメントおよび降伏モーメント:柱・梁のひび割れモーメントおよび降伏モーメント My を求めた結果は表2に示される。なおひび割れモーメント Mc および降伏モーメント My は次式によって計算される。

NID

$$Mc = 1.8\sqrt{Fc} \cdot Ze + \frac{ND}{6}$$
 (柱)

$$Mc = 1.8 \sqrt{Fc} \cdot Ze \tag{(2)}$$

$$My = 0.8a_t \sigma_y D + \frac{ND}{2} (1 - \eta_0)$$
 (柱)

$$My = 0.9a_t \sigma_y d \tag{2}$$

ここに、Ze=Z_c+_cZ_s=
$$\frac{bD^2}{6}$$
+ $\frac{(n-1)A_s j^{12}}{D}$
n= $\frac{E_s}{E_c}$ =7.56(2層柱頭より上層)

表1. 材料の性質

	コンク	リート	鉄	筋
使 用 場 所	2 層柱頭 より上層	2 層柱脚 より下層	全	層
強 度 (kg/cm²)	350 Noro i Dib	2,778 $\times 10^{5}$	S D: 使	35 用
ヤング 係数E (kg/cm³)	400	$2,970 \\ imes 10^5$	2 ×1	1 .0 ⁶
せん断弾 性係数G (kg/cm³)	1,191 ×10 ⁵	1.273 ×10 ⁵		

表2. 柱・梁の断面および断面性能

				柱						
ļ	N	断面寸法 (cm×cm)	柞i 軸 亚	力 (+ 豆 取	-) (b) - A (cm ²)	i 前 招 I (cm ⁴)	能 Mc (t•m)	My (t•m)	断面リスト (片 側)	備考
1	1	55×90	18.7	18.1	7 5080.26	3,678,936	30.34	58.37	2 - D32 2 - D16	1段配筋
1	.0	"	21.3	40.0) "	"	33.53	67.63	"	"
	9	<i>"</i> "	"	61.3	3 5093.28	3,712,787	36.98	81.67	2 - D 32 3 - D 16	"
	8	"	"	82.6	5 ″	"	40.17	90.46	"	"
	7	"	"	103.9	5080.26	3,678,936	43.12	94.00	2 - D32 2 - D16	"
(6	"	21.3	125.3	2 "	"	46.31	102.32	"	"
<i>P</i>	5		21.5	146.3	7 //	//	49.54	110.47	<i>"</i> "	"
	4	"	21.8	168.5	5 ″	"	52.81	118.50	"	"
:	3	"	"	190.3	3 //	"	56.08	126.28	2 - D 32 2 - D 16	1段配筋
0	頭	55 × 00	21.9	212		"	59.35	133.81	2 - D32 2 - D16	1 断配筋
2	脚	22 ~ 20	21.0	212.1	"		62.10	175.29	4 - D 32	2段配筋
1	頭	55 × 00	22.1	225 1	E 194 4E	2 795 542	65,56	183.33	2 - D32 2 - D16	1段 //
1	脚	期 55×90 23.1 235.2		5 0104.40	3,103,343	65.74	187.77	4 - D 32 2 - D 19	2段 //	
										
R	8	断面寸法	断	面	性 能	剛域長比	Mc	My	厳商リット	供 老
/E		$(cm \times cm)$	A (c	:m²)	I (cm ⁴)	λ	(t•m)	(t•m)	ышулг	URI 5
F	2	40×55	2304	. 17	629,794	0.112	7.71	23.26	2-D32	1段配筋
1	1	"	2356	.26	667,403	"	8.17	34.89	3 - D 32	"
1	0	"	2388	.34	690,565	"	8.46	42.05	3 - D35	"
9)	"	2424	.34	716,564	"	8.77	50.09	3 - D38	"
	3	"	2463	.71	744,982	"	9.12	58.88	3 – D 41	1段配筋
7	7	"	2530.	23	753,397	"	9.23	71.04	3 - D41 2 - D25	2段配筋
е	5	"	"		"	"	"	"	"	"
5	5	"	"		"	"	"	"	"	"
4		"	"		"	"	"	"	"	"
3	3	40×55	2530.	23	753,397	0.112	9.23	71.04	$3 - D41 \\ 2 - D25$	"
2	2	40×70	2105.	56	1,520,714	0.099	15.64	94.83	3 - D41 2 - D25	2段配筋

表3. 柱・梁の復元力特性

コンクリートのポアソン比 *v*=1/6

		ひび割れ-	モーメント	降伏モー	-メント	剛性低下率	初期剛性	ひび割れ回転角	降伏回軸角
	層	Mc(t.m) (フェイス)	Mc(t.m) (節点端)	My(t.m) (フェイス)	My(t.m) (節点端)	γу	S(t.m/rad)	$Tc (md \times 10^{-3})$	$\underset{(rad \times 10^{-3})}{Ty}$
	11	30.34	38.10	58.37	73.30	0.1196	227113.0	0.1677	2,698
	10	33.53	42.02	67.63	84.93	0.1229	"	0.1850	3,043
	9	36.98	46.44	81.67	102.56	0.1302		0.2026	3,436
	8	40.17	50.45	90.46	113.60	0.1335	"	0.2201	3,713
	7	43.12	54.14	94.00	118.04	0.1328		0.2384	3,915
牡	6	46.31	58.16	102.32	128.49	0.1361	"	0.2561	4,158
	5	49.54	62.21	110.47	138.73	0.1394	"	0.2739	4,383
	4	52.81	66.31	118.50	148.81	0.1427	"	0.2920	4,591
	3	56.08	70.42	126.28	158.58	0.1461	"	0.3101	4,780
	0	59.35	74.88	133.81	173.34	0.1495	220974.8	0.3389	5,249
	2	62.10	81.87	175.29	225.60	0.1247	227377.9	0.3601	7,954
	1	65.56	86.94	183.33	243.74	0.1276	247553.7	0.3512	7,719
	1	65.74	79.48	187.77	226.60	0.1306	248985.4	0.3192	6,970
		ひび割れき	モーメント	降伏モ-	-メント	mille let to the		ひび割れ回転角	降伏回転角
	層	Mc(t.m) (フェイス)	Mc(t.m) (剛域端)	My (t.m) (フェイス)	My(t.m) (剛域端)	рлт±ц, г ≄ γу	S(t.m/rad)	Tc (rad×10 ⁻³)	Ty (rad×10 ⁻³)
	R	7.71	8.16	23.26	24.63	0.2331	21185.5	0.3853	4,986
	11	8.17	8.65	34.89	36.94	0.2652	22450.6	"	6,206
	10	8.46	8.96	42.05	44.52	0.2849	23229.7	0.3856	6,705
271	9	8.77	9.29	50.09	53.03	0.3070	24104.3	0.3852	7,168
栄	8	9.12	9.66	58.88	62.34	0.3311	25060.3	0.3899	7,513
	7	9.23	9.772	71.04	75.21	0.3453	25343.3	0.3856	8,595
	6	"	"	//	"	"	//	"	"
	5	"	"	//	"	"	"	"	"
	4	"	"	"	"	"	"	"	"
	3	"	"	"	"	"	"	"	"
	2	15.64	16,81	94.83	101.92	0.2963	53875.0	0.3120	6,386

図2 各部材の復元力特性(曲げモーメントの回転角)

=7.07(2層柱脚より下層)

$$n_0 = \frac{N}{bDF_c}$$

 $\sigma y = 3.5t/cm^2 (降伏点応力度)$
N:柱の軸方向力,
b. D. j'. As. at:図1-C参昭

2.4 部材の復元力特性:部材の復元力特性は,表2 に示される柱・梁のひび割れモーメントおよび降伏モー メントが与えられ,部材の初期剛性および剛性低下率が 決定されれば,ひび割れ時の回転角および降伏回転角が 計算される。これらの値は表3に示される。なお表3に 示される節点端モーメントは,フエイスモーメントより, 柱においては反曲点が中央という仮定のもとに計算され る。

表3より各部材の復元力特性(曲げモーメントと回転 角の関係)を描くことができる。図2は部材の復元力特 性の代表例が示される。

2.5 解析に用いた振動系および地震動:振動系は 柱脚を固定とし,曲げ,せん断型の弾塑性振動系とする。 減衰常数(h)は,1次振動に対しては $_{1}h=0.02$,2次振動以 上の高次振動に対しては, $_{n}h=_{1}h\frac{n\omega}{_{1}\omega}$ (n \geq 2, ω :固有 円振動数)とする。

地震動は EL-CENTRO, 1940, 05, 18, N-S 成分, お よび HACHINOHE, 1968, 05, 16. E-W 成分とし, 最 大加速度はそれぞれの地震動に対して, α_{max} =300gal.お よび α_{max} =450gal.とし, 地震動の継続時間は Td=9.0 sec.とする。また解析における積分時間刻み間隔は Δt = 1/400sec.とする。

2.6 解析結果:固有値をJacobi法によって計算した結果,第1次固有周期は $_1$ T=0.7212sec.,第2次固有周期は $_2$ T=0.2351sec.,となり,各次の固有周期は設計変更前の固有周期よりも短かくなって,明かに,補強の効果が表れている。結果は図3に示される。

応答解析結果として,絶対変位,層間変位,層せん断 力,層せん断力係数,質点力,柱・梁の部材回転角,部 材回転角の降伏塑性率,節点の回転角,および層間部材 角の最大値が表4に示される。また絶対変位,層間変位, 層せん断力および層せん断力係数の最大値は図4に示さ れる。さらに梁部材角の降伏塑性率および柱部材回転角 の降伏塑性率(柱頭回転角の降伏塑性率と柱脚回転角の 降伏塑性率の平均値)は図5に示される。

曲げせん断型の弾塑性応答においては、等価せん断型 の弾塑性応答の場合と異なり各層の層間変位に対する降 伏塑性率が一義的に与えられない。それゆえここでは次 のような便法による。

先ず表4に示される梁の部材回転角 τ_s と柱の層間部 材角Rの応答値を τ_s ~R座標にプロットすれば図6の ようになる。図6より明かなように τ_s とRは略一致す る。応答値が大きくなると,建物の中間層においてやや バラッキが大きくなるが,大局的には両者はよく近似し ている。このことは梁部材にひび割れが生じると,降伏 時の回転角は近似的に柱の層間部材角に等しいことを意 味する。ゆえに柱に降伏が生ぜず,梁が降伏するような 場合には,梁のひび割れ発生時および梁の降伏時の層間 変位は近似的に次式で与えられる。

 $\delta_{\rm c} = R_{\rm c}h = \tau_{\rm g}$, ch

- $\delta_{y} = R_{y}h = \tau_{g}, yh$
- ここに,
 - δc:梁のひび割れ発生時における層間変位,
 - δy:梁の降伏時における層間変位,
 - R_c, R_y:梁のひび割れ発生時および梁の降伏時に
 おける層間部材角,
 - τ_{g.c}, τ_{g.u}:梁のひび割れ発生時および梁の降伏時に おける層間部材角,
 - h : 階高.

一方梁のひび割れ時および梁の降伏時における柱の層 せん断力は、便宜的に梁にひび割れや、降伏が生じる時 に、柱に生じる曲げモーメントから求めることができる ものとする(反曲点は柱の部材内に生ずるものと仮定す

 $(\alpha_{max} = 300 \text{ga}\ell, \text{ EL-CENTRO 1940 NS})$ 表4 a. 曲げせん断型応答解析結果

时角	2 rad)	470	1961	472	888	223	470	601	646	704	379	
角間部	× 10			~~~~	5.	с С	ri		r,	e.	m	
節点回転角	θ (× 10 ⁻³ rad)	2.222	3.391	3.443	3.378	3.327	3.137	2.873	2.535	2.095	1.603	
是性 举	炎 ^{μειν} 劉域端	0.274	0.291	0.352	0.398	0.431	0.411	0.436	0.443	0.451	0.444	
降伏	柱頭 柱関 柱関	0.098	0.132 0.072	0.127 0.054	0.113 0.045	0.111 0.046	0.106 0.058	0.105 0.068	0.093	0.062	0.080	0 063
中転 角	采 ^元 劉貞端 ×10 ⁻³ rad	1.364	1.805	2.359	2.855	3.235	3.533	3.746	3.804	3.877	3.818	
「好悪	柱项 柱脚 ×10 ⁻³ rad ³	0.265 0.172	0.401 0.218	0.436 0.184	0.420 0.167	0.436 0.180	0.440	0.460	0.428 0.365	0.295	0.421 0.118	0.485
絶対加速度	$(f_o + ll)$ (cm/sec^2)	445.32	346.81	299.13	270.96	238.62	279.66	287.53	269.16	243.20	277.69	
質点力 談 度	P(t) (k)	8.500	7.540	6.503 (0.305)	5.891 (0.277)	5.188	6.080	6.308 (0.293)	5.989 (0.275)	5.411 (0.248)	6.179 · 0.283)	6 853
層 せん断力 層せん断力係数	Q(t) (C)	8.355	15.053 (0.376)	20.329 (0.332)	24.834 (0.301)	28.564 (0.275)	31.075 (0.248)	32.603 (0.222)	33.324 (0.198)	36.697 (0.193)	39.392 (0.186)	42 503
層間変位	ô (cm)	0.397	0.530	0.667	0.780	0.870	0.937	0.972	0.984	1.000	0.938	
絶対変位	C (cm)	7.312	7.094	6.760	6.296	5.704	F86.F	4.266	3.423	2.473	1.478	
		Ξ	10	6	×	ı~	9	5	4	ŝ	~	

表 L 田子子人断型広答解析結果 (mmi = 4)0pt/1 (mmi = 4)0pt/1 (mmi = 4)0pt/1 (mmi = 4)0pt/1 (mmi = 10) (mmi		(The second sec												
A b. $\text{III}/Pet/CMBTAGARFALER \text{cmas} = 450 \text{set}, \text{ELCENTRO 1940 MS} A below weakers \text{Weakers} \text{Weakers} \text{Weakers} \text{Weakers} \text{Weakers} \text{Mealers} Mealers$		層間部材角	$R \\ (\times 10^{-3} rad)$	2.123	3.020	3.989	4.597	5.042	5.342	5.546	6.075	6.028	5.785	3.245
大日 田子····································	(SN	節点回転角	θ + × 10 ⁻³ rad	1.828	2.255	3.102	3.919	4.363	4.715	4.978	5.292	5.770	5.659	3.413
大 L 田子也人断型広答解析結果 \overline{A} \overline{L} \overline	RO 1940 I	費件	從 μ _{κι} ν 剛域端	0.413	0.409	0.521	0.616	0.654	0.618	0.652	0.693	0.756	0.741	0.593
大日. 山(小-社、紙)型(広答解析結果 $(a_{max}) = 450gat/.1$ 地(1) (a)	EL-CENT	降 伏	柱頭 柱脚 ^{Ac,y}	0.113	0.261	0.270	0.200 0.086	0.211	0.234	0.209 0.107	0.190	0.835	0.120 0.302	0.066
美人b.< 曲げ-社人断型広答解析結果 camas 他生心的。 他 中 · 1 11 - 6 Q(1) P(1) ($ch - h$) 他 ^m · · <td>450gaℓ,]</td> <td>1 較 角</td> <td>公 ⁷× 副域編 (×10⁻³rad)</td> <td>2.058</td> <td>2.539</td> <td>3.494</td> <td>4.413</td> <td>4.914</td> <td>5.309</td> <td>5.606</td> <td>5.959</td> <td>6.498</td> <td>6.373</td> <td>3.788</td>	450gaℓ,]	1 較 角	公 ⁷ × 副域編 (×10 ⁻³ rad)	2.058	2.539	3.494	4.413	4.914	5.309	5.606	5.959	6.498	6.373	3.788
大日. 山(子之人)断型(広答解析結果 港村要估 福祉金融 福祉金融 福祉金融 0 U 6 Q(1) (h) 6 1 U 6 Q(1) (h) (m) (h) 1 0 0 11.134 11.391 597.00 1 11.1415 0.553 (0.569) 60.609 597.00 1 11.1415 0.512 (0.513) 507.47 1 11.1391 597.00 507.47 1 11.1415 0.512 (0.513) 507.47 1 10.1039 11.031 507.47 1 10.1391 205.43 507.47 1 10.1391 0.512 (0.513) 507.47 1 10.1142 0.5123 (0.513) 507.47 1 10.1391 35.35 357.33 507.47 1 10.131 35.35 507.47 507.47 1 10.131 35.35 507.47 507.4	$(\alpha_{\max} =$	非好能	柱頭 柱脚 (×10 ³ rad)	0.306 0.197	0.795	0.927 0.346	0.744 0.320	0.826	0.975 0.440	0.917 0.467	0.872 0.508	3.992 1.849	0.432 2.405	0.513 3.245
夫 4 b. 曲() ⁺ (· 人) 動型式容解封 未 4 b. 曲() ⁺ (· · · · · · · · · · · · · · · · · · ·	能果	絶対加速度	$(f_o + Il)$ (cm/sec^2)	597.00	507.47	461.67	385.34	367.43	345.65	342.19	335.73	360.70	415.34	461.33
夫 4 b. 曲() ⁺ 他() ⁻ 他() ⁻ m) 港市() 福祉() ⁻ () 福祉() (m) (m) (m) (m) (m)	心答解初	質点力 震度	P(t) (k)	11.391	11.033 (0.518)	10.037 (0.471)	8.377 (0.393)	7.988	7.514	7.508 (0.349)	7.470 (0.343)	8.026 (0.368)	9.241 (0.424)	10.874
大日 山小社 市 地小車 市 市 U 市 11 11.415 0.573 11 11.415 0.573 10 10.996 0.815 11 11.415 0.573 11 11.415 0.573 11 11.415 0.573 11 11.415 0.515 11 10.996 0.815 11 10.996 1.017 11 9.285 1.361 11 9.285 1.361 11 9.285 1.361 11 9.285 1.361 11 9.285 1.361 11 9.285 1.361 11 1.42 1.42 1 5 7.112 1.498 1 4.091 1.605 1 1.608 1.605 1 0.884 0.884	ん断型ル	層 せん断力 層セん断力係数	Q(t) (C)	11.154 (0.596)	20.486 (0.512)	28.885 (0.471)	35.355 (0.428)	39.786 (0.383)	42.654 (0.341)	44.089 (0.301)	46.724 (0.277)	51.406 (0.270)	54.692 (0.258)	59.176 (0.252)
大日・ 法日本 法日本 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415 11 11.415	申父も	層間変位	ð (cm)	0.573	0.815	1.077	1.241	1.361	1.442	1.498	1.640	1.628	1.605	0.884
「「「「「」」」 「「」」 「」」 「」」 「」 「」」 「」	表4b.	絶対変位	U (cm)	11.415	10.996	10.604	10.039	9.285	8.319	7.112	5.686	4.091	2.480	0.884
		¥	9	Ξ	10	6	×	2	9	ŝ	4	ŝ	¢1	-

/ HACHINOHE 1968 FW 200m 表4 C. 曲げせん断型応答解析結果 (~

74													
	12	<u>in</u>	Ξ	10	6	∞ ¹	6	9	2) C	ন্দ	ŝ	~	-
	層間部材角	R (× 10 ⁻³ rad)	2.728	4.165	5.668	6.942	8.422	9.716	10.812	11.349	10.765	8.481	4.424
GW /	筋点回転角	θ (\times 10 ⁻³ rad)	2.381	2.890	4.230	5.530	6.493	7.253	8.197	9.042	9.281	8.212	4.548
UE 1300	人性 糸	柴 μ _{6.7} 剛域端	0.538	0.524	0.710	0.869	0.973	0.950	1.074	1.185	1.216	1.076	0.791
ACRINO	降伏聲	柱頭 柱脚 柱脚	0.131 0.068	0.422 0.110	0.423 0.123	0.386 0.171	0.494	0.595	0.599 0.424	0.520 0.472	0.363	0.168 0.498	0.082 0.635
10,846, 11	1 転 角	梁	2.681	3.254	4.763	6.227	7.311	8.168	9.231	10.182	10.452	9.248	5.048
a max - a	部 村 市	柱頭 柱脚 (×10 ³ rad)	0.352	1.285 0.536	1.454 0.422	1.433 0.634	1.935	2.473	2.625 1.859	2.389 2.168	1.735 2.652	0.880 3.363	0.633
×	絶対加速度	$(f_0 + il)$ (cm/sec^2)	657.30	594.71	541.13	479.34	431.02	407.05	360.04	319.87	308.93	367.73	290.31
	實点力 該 度	P(t) (k)	12.541	12.929	11.764	10.421	9.370	8.849	7.899	7.117	6.874 + 0.315>	8,182 (-0.375)	6.843
HIMO,	層 せん断力 層せん断力係数	Q(t) (C)	12.397	24.385	35.374	44.103	52.199 (0.502)	59.776 (0.477)	64.946 (0.443)	67.238 (0.399)	68.894 (0.362)	70.732	69.806
	層間変位	ô (cm)	0.736	1.125	1.530	1.874	2.274	2.623	2.919	3.064	2.906	2.353	1.206
	絶対変位	C (cm)	21.833	21.147	20.109	18.683	16.923	14.784	12.257	9.412	6.411	3.549	1.206
"			Ξ	10	6	×	2	9	2	-7	-00	7	-

美 4 (1) 曲/P(-2) 新型広客解析結果 (am. = 4.50g.af HACHINOHE 1966 EVM) ¹⁰ 徳羽俊心 七川(-2) 菅小(-1) ○														
A d. $\mu/P \lambda . \hbar y y . \hbar y . \hbar y$ $\sigma_{max} = 450 \text{gar} H ACHINOHE 1966 EW)$ $\hbar 34 \text{ GL}$ $\mu/P \lambda . \hbar y . \hbar y$ $\pi / \pi / h$ $\pi / \mu / h$ $\pi / \mu / h$ $\pi / \mu / h$ μ $\mu / \mu / h$ $\mu / \mu / h$ $\pi / \mu / h$ $\mu / h / h$ $\mu / h / h / h / h$ $\mu / h / h / h / h / h$ $\mu / h / h / h / h / h / h / h / h / h / $		切科罵問器	R • × 10 ³ rad·	2.997	4.730	6.728	8.845	11.339	13.777	15.773	16.495	16.156	12.797	6.190
大日 田子子人筋型広答解析結果 Amale	(M	節法回転角	θ × 10 ⁻³ rad	2.630	3.170		6.589	8.190	9.877	12.452	13.856	14.185	12.621	6.236
美 4 d. 曲 ($T \rightarrow L$)($M \oplus M \oplus M$) [$M \rightarrow M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus M \oplus M \oplus M \oplus M \oplus M$) [$M \rightarrow M \oplus $	E 1986 E	佳奉	梁 柱期	0.594	0.575	0.806	1.035	1.228	1.294	1.632	1.815	1.859	1.654	F80.1
美 4 d. 曲 ($\dot{f} + \dot{\ell} - \dot{L}$) ($\dot{m}_{max} = 4.60$,	CHINOH	降 快 聲	针.J.f. 网.域.端	0.136 0.071	0.516 0.137	0.562 0.163	0.608 0.344	0.814 0.482	0.953	0.957 0.538	0.786	0.558	0.319 0.828	0.083
美 4 d. 曲 <i>HY</i> - <i>∂</i> . <i>ÅBIIDLABRIDLABRITABA</i> $\alpha_{max} = 4$ β_{max}	50gaℓ HA	転 角	梁 [[1] - ¹ 28 [[1] - ³ rad]	2.962	3.570	5.403	7.420	9.223	11.123	14.023	15.603	15,974	14.212	6.921
美 4 d. 曲 (方 老 人断型広答解析結果 美 4 d. 曲 (方 老 人断型広答解析結果 「他 (cm) 他 (cm) 他 (cm) (cm) (cm) (cm) 10 ô Q(1) P(1) (±+ <i>i</i>) 11 29.917 0.809 12.436 (±+ <i>i</i>) 11 29.917 0.809 12.436 (±+ <i>i</i>) 11 29.917 0.809 12.436 (±+ <i>i</i>) 12 29.109 1.277 (0.653) (0.651) (±, 4) 10 29.109 1.277 (0.539) 13.233 608.60 27.841 1.817 (0.631) (0.637) 614.22 27.841 1.817 (0.539) (0.610) 27.841 1.817 (0.531) (0.531) 614.27 27.841 1.817 (0.531) (0.531) 614.27 27.841 1.817 (0.531) (0.531) 614.26 27.843 (0.532) (0.531) (0.51) 614.56 29.566 3.720 (0.531) (0.5	$(\alpha_{max} = 4$	可好服	柱頭 右脚 (×10 ⁻³ rad)	0.368 0.192	1.570	1.931 0.561	2.257 1.278	3.186 1.888	3.963 2.138	4.195 2.360	3.609 3.250	2.666 4.173	1.673 6.587	0.643 6.190
美 4 d. 曲 以 他 心 的 前型 心 的 前 (1 1) ● <	結果	絶対加速度	$(\tilde{\chi}_{o} + \tilde{u})$ cm/sec ²)	656.04	624.22	608.60	547.89	484.97	494.58	484.58	429.94	456.08	500.35	466.74
美 4 d. 曲/f ² 之 人断型/f 種物変位 層間変位 慶七人動介 11 29.917 0.400 11 29.917 0.809 0.15.35 11 29.917 0.809 12.436 11 29.917 0.809 12.436 11 29.917 0.809 12.436 11 29.109 1.277 0.6531 2 27.841 1.817 0.6531 2 25.539 1.277 0.6233 2 27.841 1.817 0.6314 2 2.7.841 1.817 0.6331 2 2.7.841 1.817 0.6331 3 2.6.058 2.7.394 49.214 3 2.6.053 3.062 65.708 3 3.052 0.5295 0.5295 3 3.052 0.5295 0.5295 3 3.551 4.259 0.5295 3 3.553 3.553 5.521 3 3.553 4.0.277	5答解析	貧 点 力 震 度	P(t) (k) (12.517	13.571	13.233	11.911 (0.559)	10.543 (0.495)	10.752	10.632	9.566	10.148	11.133 (0.511)	11.001
手人 山、山小社 橋地変位 橋間変位 1 29.917 0.809 11 29.917 0.809 10 29.109 1.277 10 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.109 1.277 11 29.175 2.388 20.756 3.062 21 23.755 3.062 21 23.755 4.259 21 13.771 4.454 21 1.4.454 4.362 3 9.569 4.362 3 9.569 4.362 3 9.569 4.362 3 9.569 4.362 3 5.221 3.551 <td>ん断型点</td> <td>「雪せん断力 雪せん断力係数</td> <td>Q(t) (C)</td> <td>12.436 (0.665)</td> <td>25.259 (0.631)</td> <td>38.169 (0.623)</td> <td>49.214 (0.596)</td> <td>57.869 (0.557)</td> <td>65.708 (0.521)</td> <td>68.708 (0.468)</td> <td>71.941</td> <td>75.839 (0.399)</td> <td>79.940 (0.377)</td> <td>87.062 (0.370)</td>	ん断型点	「雪せん断力 雪せん断力係数	Q(t) (C)	12.436 (0.665)	25.259 (0.631)	38.169 (0.623)	49.214 (0.596)	57.869 (0.557)	65.708 (0.521)	68.708 (0.468)	71.941	75.839 (0.399)	79.940 (0.377)	87.062 (0.370)
大 4 d. 他均坚应 他均坚应 11 29.917 (cm) 11 29.917 11 29.917 11 29.917 11 29.917 11 29.917 11 29.917 11 29.109 9 20.7841 9 21 23.755 5 17.232 3 9.569 2 3 9.569 2 3 9.569 2 3 9.569 2 3 9.569 1 1	曲びや.	層間変位	ô (cm)	0.809	1.277	1.817	2.388	3.062	3.720	4.259	4.454	4.362	3.551	1.687
11/H 22 05 00 10 17 00 10 17 00 10 11 10 10 10 10 10 10 10 10 10 10	₹4 d.	絶対変位	U (cm)	29.917	29.109	27.841	26.058	23.755	20.796	17.232	13.771	9.569	5.221	1.687
	HKA	ž	<u>n</u>	11	10	6	∞ [.]	5	9	ŝ	4	ŝ	5	-

る)。

この仮定にもとずき各層の復元力特性が作成できる。 この結果は表5および図7に示される。すなわち表5は 梁のひび割れ時,および降伏時における層せん断力と層 間変位で,図7は各層の復元力特性を示す。

梁降伏時の層間変位を用いて,層間変位による降伏塑 性率を計算し,これらの値を表6に示す。ここで図5に 示す梁の部材回転角より求めた降伏塑性率 $\mu_{g,y}$ と層間 変位より求めた降伏塑性率 μ_y を比較すると図8に示す ようになる。図8によれば両者は良い近似を示すが,建 物の中間層においては,応答値が大きい場合に対しては 層間変位による降伏塑性率 μ_y の方が,梁の部材回転角に よる降伏塑性率 $\mu_{g,y}$ より大きいことが明かである。

図9においては柱・梁部材の最大応力と各部材の塑性 化の状況が示される。

図7 梁ひび割れ時,梁降伏時の各層の復元力特性

図8 楽部材回転角,降伏塑性率と層間変位の降伏塑性 率の比較

表5.梁ひび割れ時梁降伏時における層せん断力と層間変位

			かな巻	割れ時	鐵形	伏 時	さる様	割れ時	鐵	伏畴
			住頭・住間 モーノント	(業) 柱せん断力	住頭・住脚 モーメント	住せん断力	梁剛域端 部材回転角	層間変位	梁剛域端 部村田転角	層間変位
	l	Mc My	t•m 18.38	t	t•m 55.46	t.	0.385	cm 0.104	4.986	cm 1.346
11	5.700	9.74 27.73 t·m	9.74	10.41	41.59	35.94	e 01×		× 10 ° 3	
0	k	41.59	9.74		41.59	50 50	0.385	0.104	6.206	1.676
TO	, +	10.09	10.09	њс. /	50.13	33.9/				
c	·	50.13	10.09	5	50.13	90	0.386	0.104	6.705	1.810
מ	, ,	10.46	10.46	19.7	59.71	40.08				
×	•	59.71	10.46	00 2	59.71	2	0.385	0.104	7.168	1.935
5		10.88	10.88	PC	70.19	11.01				
5	•	70.19	10.88	0.10	70.19	20	0.386	0.104	7.513	2.029
-	, ,	11.00	11.00	0.10	84.68	QC-1C				
ç	<u>،</u>	84.68	11.00		84.68		0.386	0.104	8.595	2.321
٥	, "	11.00	11.00	8.15	84.68	62.73				
Ľ	،	84.68	11.00	-	84.68	52 05	0.386	0.104	8.595	2.321
S	, ,	11.00	11.00	0.13	84.68	67.20				
-		84.68	11.00	- - -	84.68	65 G	0.386	0.104	8.595	2.321
۲		11.00	11.00	0.10	84.68	61-70				
~	002	84.68	11.00	8 13	84.68	62 73	0.386	0.104	8.395	2.321
`	۰z	11.00	11.00		84.68	61.20				
¢	S22	84.68	11.00	90 VL	84.68	10 22	0.386	0.104	8.595	2.321
3	.s.,	18.65	18.65	06.01	113.06	47.01				
-	+ .52		18.65		113.06		0.312	0.084	6.386	1.724
-	2.2 •	113.06	79.48	30.34	226.60	08.621				
		(※) 厳密には, 架構(位から柱のせん断:	解析等に りを得る	, t ð,	纫期剛性	を求め	これと	にひび割	れ時の履	劉変

表6.梁降伏時層間変位の降伏塑性率

•					+				
	梁降伏時		EL-CENTF	30 1940 NS		Ξ.	IACHINOF	HE 1968 EV	N
	層間変位	ara =	300gaℓ	$\alpha_{\max} = 4$	150gaℓ	a'max =	300gaℓ	a'max =	450gaℓ
	$\delta_{\gamma}(\mathrm{cm})$	ð(cm).	μy	ð(cm)	μλ	ð(cm)	μλ	ð(cm)	μλ
11	1.35	0.40	0.30	0.57	0.42	0.74	0.55	0.81	0.60
10	1.68	0.53	0.32	0.82	0.49	1.13	0.67	1.28	0.76
6	1.81	0.67	0.37	1.08	0.60	1.53	0.85	1.82	1.01
×	1.94	0.78	0.40	1.24	0.64	1.87	96.0	2.39	1.23
2	2.03	0.87	0.43	1.36	0.67	2.27	1.12	3.06	1.51
9	2.32	0:94	0.41	1.44	0.62	2.62	1.13	3.72	1.60
ŝ	2.32	0.97	0.42	1.50	0.65	2.92	1.26	4.26	1.84
4	2.32	0.98	0.42	1.64	0.71	3.06	1.32	4.45	1,92
°	2.32	1.00	0.43	1.63	0.70	2.91	1.25	4.36	1.88
5	2.32	0.94	0.41	1.61	0.69	2.35	1.01	3.55	1.53
-	1.72	0.54	0.31	0.88	0.51	1.21	0.70	1.69	0.98

EL-CENTRO, 1940, N-S. & max.=300 gal.

図9-a 最大曲げモーメントと各部材の塑性化状況

HACHINOHE,1968,E-W. 《 max.=300 gal. ^層 17.59 柱 梁

EL-CENTRO, 1940, N-S.

Fizik	15 10	☆ max.=450	gal.
間	15.19	桂	梁
4 4	36.58 13.49	$\Delta \mu c y^T = 0.113$ $\mu c y^T$	gy=0.413
11	20.76 14.34	$\mu cy^{B} = 0.073$	
	36.83 18.43		=0.409
10	28.23 19.47	=0.110	
	54.03 25.06		=0.521
9	36.52- 26.73	=0.270	
	56,17-32 43		=0.616
8	46 70 43 69	=0.200	
	50 70 40 50		=0.654
7	51 62- 53 61	=0.211	
			=0.618
6	65.58 45.84	=0.234	
Ĩ	53.797 58.36	$\Delta \times \frac{1-0.100}{2}$	=0.652
5	69.18 47.77	=0.209	
Ŭ	57.56 62.66	<u> </u>	-0.693
7	72.84 51.11	=0.190	-0.000
7	61.74 67.20		-0.756
2	79.05 54.83	=0.084	-0.750
J	58.67 83.71	=0.387	0 741
2	79.24 52.10	$\triangleq 1 = 0.120$	=0.741
2	65.06 103.25	=0.302	
4	85.19 58.62	$\Delta + + + + + + + + + + + + + + + + + + +$	=0.593
I	_ 131.90	=0.466	
		דדלדד	
	最大曲げモーメント (tm) 部材塑性化状况	
		× :ひび割れ o	:降伏

HACHINOHE, 1968, E-W.

		∝max.=450	gal.
層	18.47	柱	梁
	36.94 -16.40	$\Delta \overset{\mathbf{X}}{\mu} \overset{\mathbf{X}}{\mu} \overset{\mathbf{X}}{\mu} \overset{\mu g}{\mu} \overset{\mu g}{\mu}$	y =0.594
11	75.68 17.78	$\mu cy^{B} = 0.071$	
	55.50 -22 80		=0.575
10	40.02 32.67	=0.516	
	67 70 1.25 54		=0.806
9	60.62 43.36	=0.562	
·	1-1-1		=1.035
8	70 61 60 30	=0.608	
Ũ			=1.228
7	88.72 - 62.34	=0.814	
	1-1-1	A	=1.294
6	105.90 - 75.21	=0.953	
Ũ			=1.632
5	115.47 -75.21	- [=0.957 -0.538	
-	14.75 09.94		=1.815
4	111.20 75.21	=0.786	1.01
	84.79 100.14	A	=1 859
3	103.04 75.21	T=0.558	1.000
Ũ	84.70 125.76	×=0.873	-1 654
2	92.82 75.21	=0.319	-1.00.
2	113.00 103.57	*=0.828	=1 084
1	67.90 101.92	=0.830	-1.001
'	183.15	x=0.888	
	11111	/////	
最	大曲げモーメント(tm)	部材の塑性化状況	

x:ひび割れ o:降伏

図9-d 最大曲げモーメントと各部材の塑性化状況

2.7 解析結果の考察:解析結果にもとづき,前論文 において示された解析例(R.P.C.11層建物)と本論文の 解析例(1),すなわち設計変更前と設計変更後の解析結果 について,両者を対比しつつ考察する。

(1) 第1次固有周期 $_1$ T=0.7212sec.は、設計変更前の 固有周期 $_1$ T=0.7703sec.の約94%で、第2次固有周期 $_2$ T=0.2351sec.は変更前の $_2$ T=0.2662sec.の約88%とな り、ともに短くなっている。この理由は設計変更に伴い 部材の剛性が増加したこと、および設計変更前は等価せ ん断型とし、変更後は曲げせん断型として固有周期を計 算したためである。

(2) 設計変更後の応答値は、一般に変更前の応答値よ りも小さい。しかし詳しく検討すれば、地震動が EL-CENTRO の場合と HACHINOHE の場合とではかな りの相違がある。すなわち地震動が EL-CENTRO によ る設計変更後の応答値は変更前の応答値よりも若干小さ くなっているものも多いが、逆に大きくなっているもの もある。この例は α_{max} =450gal.の場合における下層の絶 対変位、層間変位およびベースシャー係数である。この 理由は、EL-CENTRO の応答スペクトルにおいて、応答 値が固有周期 T=0.72-0.77sec.近傍では T=0.7212 sec.のほうが T=0.7703sec.(変更前)よりやや大きいこ とに起因していると思われる。

これに対して、地震動が HACHINOHE の場合におけ る設計変更後の応答値は、変更前の応答値よりも著しく 小さい。とくに α_{max} =450gal.の場合は絶対変位, 層間変 位および降伏塑性率が小さい。この理由はHACHI-NOHEの応答スペクトルにおける T=0.7703sec.に対 する応答値が T=0.7212sec.に対する応答値より大きい ことに原因があると考えられる。とくに $\alpha_{max} = 450 gal. o$ 場合においては塑性化が進んでいるので、履歴減衰によ る影響が大きいためと考えられる。層せん断力係数は, $\alpha_{max} = 450 gal. の場合は、設計変更前よりも変更後のほう$ が大きい。この理由は変更後は柱・梁部材の耐力および 剛性が高められたためである。しかしながら amax=300 gal.の場合は、設計変更前の応答値が変更後の応答値よ りも必ずしも大きいとはいえない。とくに1層を除く中 間層から下層における絶対変位や層間変更は変更後の応 答値のほうが大きい。これは曲げせん断型の弾塑性的な 取扱による微妙な影響によるものと考えられる。

(3) 設計変更後の応答値が変更前の応答値よりも概し て小さいことから推定できるように,設計変更後におけ る柱・梁の塑性化の進行が変更前に比してかなり抑えら れている。そして柱部材の降伏は地震動が HACHI-NOHE で, α_{max} =450gal.の場合においても生じていな い。これは柱・梁の耐力が増加したためである。 (4) 各層の降伏塑性率とゆう捉え方をするために、梁の部材回転角と層間部材角とが近似的に一致する事実にもとずき、梁部材のひび割れ時や降伏時における層間変位を算出できるので、各層の降伏塑性率を導入する。この値は等価せん断型における層間降伏塑性率に対応する。この結果この層間降伏塑性率が梁部材降伏塑性率に安全側の誤差でよく近似していることが明かである。

3. 解析例(2): (H.P.C. 9 層建物)

3.1 概要:地下1層,地上9層のH.P.C.構造の建 物における梁間架構について解析する。この建物は桁行 方向の長さは77mで,5.5m毎に梁間方向15ヶ所に耐震 付ラーメンが設けられている。そして15ヶ所の耐震壁付 きラーメンをまとめて1つの耐震壁付きラーメンに等価 置換して解析される。

柱・梁H型鋼を用い,ALC 板による耐火被覆とし,耐 震壁は図図型式の平鋼板の筋違を挿入した PC 板を用い ている,床板は現場打ちコンクリートとし,外壁は PC 板

図-10 架構モデルと振動系モデル

によるカーテンウォールである。基礎は杭打ち基礎で、 深礎基礎工法を用いている。杭長さは5.40m および7.60 mの2種類,杭径は1.20mのベノト杭とし、n値50以上 の土丹層に支持されている。土質柱状図によれば表層は 5 m-8 mの間にローム、シルトおよび細砂の各層が ある。図10はこの建物の解析モデルを示す。

なお本建物は振動試験(3)が行われている。振動試験に よる固有周期等は表7に示される。

3.2 固有振動解析:図10に示される架構の剛性マトリックスはマトリックス法による骨組解析法⁽⁴⁾によって算定される。解析に必要な諸量は表8に示される。ま

表7. 振動実験による固有固期一覧

方向	ラーメン 次 数	ス ラ ブ 次 数	偏心モーメント (kg.m)	共振振動数 f(1/sec)	共振周期 [T(sec)	減 衰 常 数 h	ロッキング率	スウェイ率
右口		0	75 [.] .0	2.40	0.416	0.012	0.425	0.049
<u>کتر</u> ۲٦		0	8.0	2.47	0.405			
	1	1	75.0	2.64	0.379	0.015	0.480	0.055
梁		1	8.0	2.73	0.366			
間		2	20.0	5.08	0.197	0.012	0.248	0.039
	2	3	7.0	10.50	0.095	0.045	0.206	0.082
4	1	0	25.0	2.19	0.457	0.022	0.018	0.030
辺	1	0	8.0	2.30	0.435			
桁行	2	0	18.0	6.99	0.143	0.036	0.005	0.400
	3	0	7.0	11.30	0.089	0.052	0.041	0.095

表8.架構解析用(梁間方向)の諸元

	せん断断面積 A1(cm²)	断面 2 次モーメント I1(cm ⁴)	形状係数 k 1	塑性係数 β1*	ヤング率 E(t/cm²)**	せん断剛性 G(t/cm²)
9	180711	0.148×10^{10}	1.50	1.50	2.1×10^{3}	59.00
8	11	0.148×10^{10}	"	11	11	"
7	11	0.148×10^{10}	11	"	11	"
6	11	0.169×10^{10}	11	"	//	"
5	11	0.169×10^{10}	11	11	//	"
4	11	0.175×10^{10}	11	"	"	"
3	11	0.175×10^{10}	11	"	//	"
2	11	0.183×10^{10}	11	"	"	"
1	180711	9.183×10^{10}	1.50	1.00	2.1×10^{3}	59.00

* ひび割れ発生後はβ=0.1となる

** 柱が鉄骨構造の為

た固有値解析は基礎が固定の場合とロッキングおよびス ウェイングを伴う場合について行う。

解析に必要な諸量は表9に示される。なおロッキング およびスウェイングに対するばね常数は振動試験の結果 より算定した。固有値解析はJacobi法による。この結果 より基礎固定の場合とそうでない場合の違いが明かであ る。

3.3. 地震応答解析:地震応答解析で用いるロッキ ングおよびスウェイングを伴う場合における架構の弾性 時の剛性マトリックスは"付録1"に示される。また質 量,せん断剛性,せん断降状歪等の諸量は表9に示され る。

解析における復元力特性は,壁柱のせん断歪に対して, 図11に示される BI-LINEAR 型とする。作用させる地震 動は EL-CENTRO, 1940, 05, 18, N-S 成分とし, 最大 加速度 α_{max} =500gal., 継続時間 Td=5.0sec., 計算時間 刻みは Δt =0.002sec.(ブリンターの打ち出しは0.01sec. 刻み)とされる。

減衰マトリック [C] はロッキングおよびスウェイン グを伴う場合の架構の剛性マトリックスを [K] とすれ ば、次式で求まる。

 $[C] = \frac{2_1 h}{\omega} [K]$

ここに, 第1次減衰常数:₁h=0.02,

第1次固有円振動数:₁ω=15.43779 (1/sec.),

第1次固有周期:1T=0.4070 (sec.)

応答解析結果は表10, および表11に示され, かつ図12, 図13, および図14に図示される。これらの図よりそれぞ

	階 高	質量	せん断剛性	せん断2次剛性	せん断降伏度位	せん断降	:伏歪	剛 性	減衰常数 h(t acc/am)	
	H ₁ (m)	m ₁ (t•sec ² /cm)	K _{si} (t/cm)	K si(t/cm)	0 s,1,y(CIII)	γs,i,y(1	au)	KI(L/CIII)	R(LSEC/CIII)	
9	2.80	0.601	0.7108×10^{7}	0.7108×10^{6}	0.056	0.20×1	.0 ⁻³	/	1 /	
8	2.65	0.492	"	"	0.053	"				
7	"	0.487	"	11	"	"				
6	"	"	11	11	"	"				
5	"	"	11	"	"	"				
4	"	"	11	"		"				
3	"	"	//	"	"	"				
2	"	11	11	"	"	"				
1	2.65	0.487	0.7108×10^{7}	0.7108×10^{6}	0.053	0.20×1	.0 ⁻³	/	/	
0		0.713					k _o =	0.119×10 ⁵	c _o =30.8728	
θ		$I_{\theta} = 0.235 \times 10^{6}$ (t.sec.cm)					$K_{\theta} =$	0.691×10 ¹⁰	$C_{\theta} = 0.1793 \times 10^8$	
*	* $k_{s,l} = \frac{\beta G A_l}{\kappa_l} (t/cm)$ ** $k_{s,l} = \frac{k_{s,l}}{10} (t/cm)$ (t·sec·cm/rad) (t·sec·cm/rad)									

表9. 動的解析用(梁間方向)の諸元

表10 最大応答値

		絶対変位	基礎上り量	ロッキング量	実 変 位	層間変位	曲げ層間変位	せん断層間変位	せん断層間 変位塑性率				
ρ^{m_g}		<i>x</i> _i (cm)	x₀(cm)	$\theta H_i(cm)$	y _i (cm)	δ _i (cm)	δ _{B,I} (cm)	δ _{s.I} (cm)	$\mu_{\mathrm{s},\mathrm{i}}$				
þ	9	7.4132	0.300	1.7688	5.5550	0.4194	0.3845	0.0349	0.6232				
þ	8	6.7956	"	1.5624	5.1356	0.4132	0.3543	0.0589	1.1113				
) m ·	7	6.1957	"	1.3671	4.7225	0.5228	0.3284	0.1944	3.6679				
2	6	5.5273	"	1.1718	4.2205	0.6345	0.3116	0.3229	6.0925				
	5	4.7582	"	0.9765	3.6155	0.7168	0.2860	0.4308	8.1283				
i de i	4	3.9445	"	0.7812	2.9265	0.7649	0.2448	0.5201	9.8132				
/	3	3.0998	"	0.5859	2.2554	0.7690	0.1880	0.5810	10.9623				
	2	2.1742	"	0.3906	1.5159	0.7637	0.1159	0.6478	12.2226				
	1	1.2252	"	0.1953	0.7528	0.7528	0.0418	0.7111	13.4172				
	0	0.3000	0.300		0.3000	\square							
	θ	0.737×10-3 rad		\nearrow									

なお、"付録(2)、(3)"において、各層におけるせん断力 とせん断部材角の関係($Q_1 - r_{1.5}$)、および1層と3層にお けるせん断歪速度とせん断歪の関係 ($r_{1.5} - r_{1.5}$)が示され る。

4. 結

前論文においては、構造物における柱・梁部材に塑性 ヒンジが発生する状態を単純塑性解析理論にもとずき解 析し,この方法を地震応答解析法に適用する方法を提案 した。そしてこの解析法の妥当性を例題によって示し, 若干の考察を加えた。

∞ ∯Hi

<u>x.</u>

	水平力	震度	層せん断力	層せん断力係数	転倒モーメント	絶対加速度	絶 対 速 度
						$(\dot{x}_{i}+\dot{x}_{o})$	x _i
	$P_i(t)$	Ki	$Q_i(t)$	gi	M _{ovt} (×10 ² t.m)	(cm/sec ²)	(cm/sec)
9	837.81	1.4225	837.81	1.4225	23.459	1394.03	90.63
8	593.22	1.2303	1431.03	1.3360	61.381	1205.73	80.94
7	496.10	1.0395	1910.01	1.2335	111.852	1018.69	76.23
6	427.96	0.8967	2257.43	1.1144	171.056	878.76	74.19
5	426.83	0.8943	2506.08	1.0013	235.152	876.45	69.08
4	430.35	0.7017	2707.08	0.9084	301.601	883.67	59.79
3	400.18	0.8385	2887.04	0.8350	367.734	822.73	47.72
2	332.22	0.6961	3113.60	0.7913	435.631	682.19	33.15
1	284.08	0.5952	3349.55	0.7592	505.397	583.32	18.12
0	472.96	0.6769	3572.72	0.6791	505.397	663.33	44.82
θ						$\ddot{\theta}$ =500.15 (rad/sec ²)	$\dot{\theta}$ =0.0126 (rad/sec)

表11. 応答層せん断力, せん断力係数等

表12. 応答部材角

(単位:10⁻³rad.)

	全部材角	ロッキング	層間部材角	せん断部材角	曲げ部材角	 一層間部材角 一層間部材角	<u>曲</u> げ部材角 層間部材角
	R _i *	θ	$R_i - \theta^{**}$	γ_1	$R_i - \theta - \gamma_i$	$\gamma_{i}/R_{i}- heta$	$R_i - \theta - \gamma_i/R_i - \theta$
9	2.2060	0.7370	1.4979	0.1245	1.3734	0.0831	0.9169
8	2.2637	"	1.5592	0.2223	1.3369	0.1426	0.8574
7	2.5222	"	1.9728	0.7336	1.2392	0.3719	0.6281
6	2.9025	"	2.3743	1.2184	1.1759	0.5089	0.4911
5	3.0703	"	2.7048	1.6258	1.0790	0.6011	0.3989
4	3.1875	11	2.8863	1.9626	0.9237	0.6800	0.3200
3	3.4931	11	2.9020	2.1926	0.7094	0.7555	0.2445
2	3.5811	"	2.8819	2.4445	0.4374	0.8482	0.1518
1	3.4911	0.7370	2.8408	2.6832	0.1576	0.9445	0.0555

* $R_i = \frac{x_i - x_{i-1}}{H_i - H_{i-1}}$ ** $(R_i - \theta)$ の最大値で、 R_i の最大値と θ の最大値の差とは稍異る。

本論文においては、更に2例について解析し、前論文 において提案された解析法の妥当性について考察した。 その結果、

(1) 本解析法によれば、構造における各部材の塑性化の状況を考慮しながら、地震時に於ける構造物の挙動を 厳密に把握できる。すなわち鉄筋コンクリート構造における、部材のヒビ割れ、降伏の状況、また鉄骨構造にお ける降伏の状況,ならびに各種構造の時系列における応 力や変形の状態を明白にすることができる。

(2)通常地震動による構造物の応答解析は構造物をせん断系に置換して解析する。厳密には曲げ・せん断系として解析すべきで、とくに剛性の評価に違いが生じ、地震応答に微妙な違いが生じる。

(3) 地盤の状況を考慮して、スウェイング、ロッキン

グ振動を伴う場合における地震応答解析も可能である。 そして地震時における構造物の振動性状を明確にするこ とができる。勿論地盤のモデル化については今後検討す べき点は多い。

参考文献

(1)小高昭夫:構造部材の塑性ヒンジ機構を考慮した構造物の応答解析,愛知工業大学,"研究報告"No.17:1982,03.
(2)小高昭夫他:部材の塑性ヒンジ機構を考慮した架構の応答解析,日本建築学会学術講演梗概集:1973,10.
(3)日本鋼管㈱:床変形を考慮した高層建築の動的解

析, 日本鋼管株式会社技報 No.60:1973.

(4) 小高昭夫他:マトリックスを用いた骨組解析の一考

察,日本鋼造協会,第3回研究集会,マトリックス構造

解析講演論文集:1969,05.

付録(1): ロッキングおよびスウェイングを伴う場合にお ける架構の弾性時剛性マトリックス.

付録(2):1層,3層,5層におけるせん断力とせん断部 材角の関係.

付録(3):1層と3層におけるせん断歪速度とせん断歪の 関係。

付録1.架構の剛性マトリックス

STIFFNESS MATRIX

	θ	χ_0	x_1	X2	<i>x</i> ₃	χ_4
	0.1206171D 1	1 0.5974777D 07	-0.1787714D 07	-0.1257026D 07	-0.8822605D 06	-0.6071041D 06
	0.5974777D 0	7 0.3781937D 05	-0.2696820D 05	0.3148763D 03	0.2210001D 03	0.1520754D 03
	-0.1787714D 0	7 -0.2696820D 05	0.5214731D 05	-0.2674446D 05	0.4713405D 03	0.3243404D 03
	-0.1257026D 0	7 0.3148763D 03	-0.2674446D 05	0.5195572D 05	-0.2686636D 05	0.3973330D 03
	-0.8822605D 0	6 0.2210001D 03	0.4713405D 03	-0.2686636D 05	0.5183972D 05	-0.2691663D 05
(K) =	-0.6071041D 0	6 0.1520754D 03	0.3243404D 03	0.3973330D 03	-0.2691663D 05	0.5176174D 05
	-0.4119175D 0	6 0.1031825D 03	0.2200636D 03	0.2695887D 03	0.3576653D 03	-0.2696671D 05
	-0.2799146D 0	6 0.7011666D 02	0.1495421D 03	0.1831965D 03	0.2430480D 03	0.3395280D 03
	-0.1786323D 0	6 0.4474615D 02	0.9543286D 02	0.1169100D 03	0.1551053D 03	0.2166756D 03
	-0.8537630D 0	5 0.2138617D 02	0.4561160D 02	0.5587645D 02	0.7413169D 02	0.1035589D 03
	-0.4848311 D 0	6 0.1214468D 03	0.2590171D 03	0.3173087D 03	0.4209757D 03	0.5880856D 03

<i>x</i> 5		<i>x</i> ₆		<i>x</i> ₇	<i>x</i> ⁷			<i>x</i> ₉	
$-0.4119175\mathrm{D}$	06	$-0.2799146\mathrm{D}^{-1}$	06	$-0.1786323\mathrm{D}$	06	$-0.8537630\mathrm{D}$	05	$-0.4848311\mathrm{D}$	06
$0.1031825\mathrm{D}$	03	$0.7011666\mathrm{D}$	02	$0.4474615\mathrm{D}$	02	$0.2138617\mathrm{D}$	02	$0.1214468\mathrm{D}$	03
$0.2200636\mathrm{D}$	03	$0.1495421\mathrm{D}$	03	$0.9543286\mathrm{D}$	02	$0.4561160\mathrm{D}$	02	$0.2590171\mathrm{D}$	03
$0.2695887\mathrm{D}$	03	$0.1831965\mathrm{D}$	03	$0.1169100\mathrm{D}$	03	$0.5587645\mathrm{D}$	02	$0.3173087\mathrm{D}$	03
$0.3576653\mathrm{D}$	03	0.2430480D	03	$0.1551053{ m D}$	03	$0.7413169\mathrm{D}$	02	$0.4209757\mathrm{D}$	03
$-0.2696671 \mathrm{D}$	05	$0.3395280\mathrm{D}$	03	$0.2166756\mathrm{D}$	03	$0.1035589\mathrm{D}$	03	$0.5880856\mathrm{D}$	03
$0.5169334\mathrm{D}$	05	$-0.2697952\mathrm{D}$	05	0.3106816D	03	$0.1484885\mathrm{D}$	03	$0.8432300\mathrm{D}$	03
$-0.2697952\mathrm{D}$	05	$0.5153171\mathrm{D}$	05	$-0.2707774\mathrm{D}$	05	$0.2306005\mathrm{D}$	03	$0.1309524\mathrm{D}$	04
$0.3106816\mathrm{D}$	03	$-0.2707774\mathrm{D}$	05	$0.5131812\mathrm{D}$	05	$-0.2720383 \mathrm{D}$	05	$0.2023896\mathrm{D}$	04
0.1484885D	03	$0.2306005\mathrm{D}$	03	$-0.2720383\mathrm{D}$	05	$0.4958340\mathrm{D}$	05	$-0.2305922\mathrm{D}$	05
0.8432300D	03	$0.1309524\mathrm{D}$	04	0.2023896D	04	$-0.2305922 \mathrm{D}$	05	0.1717574D	05

付録(2):各層におけるせん断力とせん断部材角の関係

付録(3);1層と3層におけるせん断層断度とせん断層の関係 (γi~γi)

