構造部材の塑性ヒンジ機構を考慮した構造物の応答解析

小 高 昭 夫

Non-Linear Response Analysis of Plastic Hinged Frames Subjected to Earthquake Ground Motions

Teruo ODAKA

In this paper, the analytical method is presented to investigate the behaviors of nonlinear response of framed structures subjected to earthquae ground motions under the occurrence of plastic hinges in members of which framed stucture is formed. Relationship between bending moments and plastic rotation in plastic hinge mechanism is extended to the domain in bi-linear or trilinear type by using the idealized elasto-plastic type relationship proposed by Ray W. Clough.

Based on the criteria of judgement on elastic and plastic conditions of members, nonlinear response analysis framed structure is accomplished successively and numerically through so-called incremental linear accerelation procedure.

From the results of numerical analysis of 2 case of framed structural models, it is evident that energy absorption owing to hysteresis loop of plasic hinge mechanism have a great effect to decrease the amounts of dynamical response of framed structure considerably.

1. 序

部材の塑性を考慮した構造物の応答解析については, 種々の方法が提案されている。例えば G. V. Berg⁽¹⁾ は 構造部材の曲げモーメントと回転角の関係が完全弾塑性 になると仮定して塑性ヒンジを逐次追跡する方法, S.L. Lee 等⁽²⁾は構造部材の曲げモーメントと曲率の関係がBi-Linear型になるものとして、この関係からせん断力と変 形との関係を求めて解析する方法, Warren R. Walpole と R. Shapherd⁽³⁾は単純塑性解析の原理にもとづき塑性 ヒンジの追求法を示している。また管野忠⁽⁴⁾は反曲点が 変化しない梁の曲げモーメントと回転角の関係が完全弾 塑性の場合を、小堀鐸二等^{(5),(6)}は重力による軸力を考慮 した弾塑性ジョイントが Bi-Linear 型履歴特性を有する 場合や、構造部材の曲げモーメントと曲率の関係が、Ramberg-Osgood型で、有限巾の弾塑性ジョイントを有す る場合を、梅村魁等(7)は構造部材の反曲点を仮定した等 価逆対称性の曲げモーメントと回転角の関係が Modified Degrading Tri-Linear型となる場合等の研究が行われて いる。

本論文においては、鉄骨構造あるいは鉄筋コンクリート構造架構の動的な影響を考慮した終局耐力を算定する ため、主として柱・梁部材の曲げモーメントによるヒビ 割れおよび降伏を逐次考慮した曲げ、せん断架構の地震 動による弾塑性応答解析を単純塑性解析(ヒンジ理論) にもとづいて行う。柱や梁および壁体のせん断変形の影 響が大きいときは、せん断変形に伴う塑性化も考慮する。

解析は部材端の塑性ヒンジ発生に伴う曲げモーメント と塑性回転角の関係は R. W. Clough⁽⁸⁾の提案する方法 を拡張した方法によった。この方法の利点は,柱や梁の 反曲点の変動に関係なく弾塑性化の判定が可能な点であ る。すなわち架構の各部材が地震動の作用によって弾塑 性挙動を示すに従い,架構の剛性マトリックスを作成し, 増分形式による直接積分法によって応答解析を行う。

2. 解析の方法

2.1. 解析の仮定。

解析においては、構造物を次のように抽象化して解析 する。

(1) 質量は架構の各層床位置に集中させる。. (床は剛と する。)

(2) 架構は線材から成る部材で構成されるものとする。

(3) 各部材には曲げモーメント, せん断力および軸方向 力による変形を生じ, 部材端は剛域を考慮する。

(4) 各部材の塑性化は、材端または剛域端における曲げ モーメントによるヒビ割れおよび降伏あるいはせん断変 形に伴う斜めヒビ割れ等により生ずるものとする。なお 柱の軸方向力による降伏は考慮しない。 (5) 各部材のヒビ割れまたは降伏後の挙動は、曲げモー メントと塑性回転角およびせん断力と塑性せん断部材角 の関係がいわゆる剛塑性的Tri-Linear型になるものとす る。

(6) 基礎部分のスウェイやロッキング振動も考慮する。2.2. 解析理論

架構を構成する部材における弾塑性剛性マトリックス を導くと次のようになる。ここでは曲げ降伏は剛域端

(剛域がないときは材端)に生ずるものとする。

図1に示すある部材において,降伏が生ずるところに 塑性ヒンジ機構(長さのない)を考える。いまここでは 剛域のない梁の場合について考察してみる。図2におい てi端を固定とした場合,各塑性ヒンジ機構の曲げモー メントと回転角の関係が次の撓性マトリックス $[F]_{c_1} =$ $[F]_{c_2}$ で表わされるものとする⁽⁹⁾

$$\mathcal{R} \rightarrow 0$$
 (\mathbb{I}) $\mathcal{L} \rightarrow \infty$ (\mathcal{C})

Qi~△ √: 図1―(a) 部材の材端応力と変形

$$(F)_{c_1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & H/4EIk_1 \end{bmatrix}$$
(1)
$$(F)_{c_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & H/4EIk_2 \end{bmatrix}$$
(2)

部材の撓性マトリックス[F]mは(3)式で表わされる。

$$[F]_{m} = \begin{bmatrix} H/EA & 0 & 0 \\ 0 & H^{3}/3EI & H^{2}/2EI \\ 0 & H^{2}/2EI & H/EI \end{bmatrix}$$
(3)

マトリックス法により *i* 端固定で *j* 端に材端力と材端 変形が作用するときの撓性マトリックス[F]は(4) 式とな る。

	[1	0	0]	[0	0	0]	[1	0	0]	
[F] =	0	1	н	0	0	0		0	1	0	+
	l o	0	1]	L O	0	$H/4EIk_1$	J	0	Η	1	

$$[\mathbf{F}]_{m} + [\mathbf{F}]_{c_{2}} = \begin{bmatrix} \mathbf{H}/\mathbf{E}\mathbf{A} & 0 & 0 \\ & \frac{\mathbf{H}^{3}}{\mathbf{E}\mathbf{I}} \left(\frac{1}{3} + \frac{1}{4k_{1}}\right) & \frac{\mathbf{H}^{2}}{\mathbf{E}\mathbf{I}} \left(\frac{1}{2} + \frac{1}{4k_{1}}\right) \\ & 0 & \frac{\mathbf{H}^{2}}{\mathbf{E}\mathbf{I}} \left(\frac{1}{2} + \frac{1}{4k_{1}}\right) & \frac{\mathbf{H}}{\mathbf{E}\mathbf{I}} \left(1 + \frac{1}{4k_{1}} + \frac{1}{4k_{2}}\right) \end{bmatrix}$$
(4)

ゆえに撓性マトリックス [F] の逆マトリックス [K]22= [F]⁻¹ は

$$[\mathbf{K}]_{22} = \begin{bmatrix} \frac{\mathbf{EI}}{\mathbf{H}} & 0 & 0 \\ 0 & \frac{12\mathbf{EI}}{\mathbf{H}^3} \cdot \frac{4k_1k_2 + k_1 + k_2}{2k} & -\frac{6\mathbf{EI}}{\mathbf{H}^2} & \frac{k_2 + 2k_1k_2}{k} \\ 0 & \frac{6\mathbf{EI}}{\mathbf{H}^2} & \frac{k_2 + 2k_1k_2}{k} & \frac{4\mathbf{EI}}{\mathbf{H}} & \frac{3k_2 + 4k_1k_2}{2k} \end{bmatrix}$$
(5)
$$\approx \mathbf{C} \quad \mathbf{K} = 2(1+k_1)(1+k_2) - \frac{1}{2}$$

となる。同様にして [K]₁₁ = [H][K]₂₂[H]^T, [K]₁₂ = [K]₂₁^T = -[H][K₂₂] を計算すると、全体としての剛性マトリッ クス [K] は、(6)式で与えられる。

$$\left\{\begin{array}{c}
P_{i} \\
Q_{i} \\
M_{i} \\
P_{j} \\
Q_{j} \\
M_{j}
\end{array}\right\} = \left[\begin{array}{c}
K_{11} & K_{12} \\
K_{12} & K_{22} \\
K_{12} & K_{22}
\end{array}\right] \left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
\theta_{j}
\end{array}\right\}$$
(6)

このような方法で剛域を有する柱の剛性マトリックス を増分形にて表わすと次のようになる。すなわち図1に おいて増分材端力 ΔP_i , ΔQ_i , ΔM_i , ΔP_j , ΔQ_j , ΔM_j と材端変形 Δu_i , Δv_i , $\Delta \theta_i$, Δu_j , Δv_j , $\Delta \theta_j$ の関係 は(7)式で表わされる。

$$\begin{bmatrix} dP_{i} \\ dQ_{i} \\ dQ_{i}$$

- i 端, j 端が降伏してヒンジが形成されたとき: $<math>k_1, k_2 \rightarrow 0$
- *i*端, *j*端がヒビ割れのように半剛性のとき:

 $0 < k_1, k_2 < 10^5$ (実際には0.1~1.0程度) となる。尚図3に半剛性ヒンジ係数 k_1, k_2 と剛性低下率 α の関係を示す。図において、 m_c, τ_c はヒビ割れが生 じたときのヒビ割れモーメント、ヒビ割れ回転角である。 部材の応力と変形の関係は次のようになる。すなわち 部材の剛域端における曲げモーメント m_i, m_j と回転角 τ_i, τ_j の関係は、剛性マトリックスの関係において、 λ_i = 0, λ_j = 0, $u_i = u_j = v_i = v_j = 0$ とおけば得られる。 増分形で表わすと、

$$\left\{ \begin{array}{c} \Delta \mathbf{m}_i \\ \Delta \mathbf{m}_j \end{array} \right\} = \left[\begin{array}{c} a & b \\ b & a \end{array} \right] \left\{ \begin{array}{c} \Delta \tau_i \\ \Delta \tau_j \end{array} \right\}$$
(9)

ここに

$$a = \frac{1}{2k} \frac{2EI}{(1 - \lambda_i - \lambda_j)H} \{8k_1k_2(1 + \gamma) + 6k_1\}$$

$$b = \frac{1}{2k} \frac{2EI}{(1 - \lambda_i - \lambda_j)H} \{4k_1k_2(1 - 2\gamma)\}$$

$$\gamma = \frac{3\chi EI}{\beta GA(1 - \lambda_i - \lambda_j)^2 H^2}$$

$$2k = 4(k_1 + 1)(k_2 + 1)(1 + 4\gamma) - (1 + \gamma)$$
(10)

となる。剛性マトリックスの場合と同様に、半剛性ヒン ジ係数 k1, k2 を変化させることによって、弾塑性時の 増分応力が求められる。

なお節点における材端モーメントは増分形で示すと(11) 式となる。

$$\Delta \mathbf{M}_{i} = \frac{1 - \lambda_{j}}{1 - \lambda_{i} - \lambda_{j}} \Delta \mathbf{m}_{i} + \frac{\lambda_{i}}{1 - \lambda_{i} - \lambda_{j}} \Delta \mathbf{m}_{j}$$

$$\Delta \mathbf{M}_{j} = \frac{\lambda_{j}}{1 - \lambda_{i} - \lambda_{j}} \Delta \mathbf{m}_{i} + \frac{1 - \lambda_{i}}{1 - \lambda_{i} - \lambda_{j}} \Delta \mathbf{m}_{j}$$
(11)

また剛域端の回転角 τ_i , τ_j と節点回転角 θ_i , θ_i の関係は増分形で示すと(12)式で表わされる。

$$\Delta \tau_{i} \frac{1 - \lambda_{j}}{1 - \lambda_{i} - \lambda_{j}} \Delta \theta_{i} + \frac{\lambda_{j}}{1 - \lambda_{i} - \lambda_{j}} \Delta \theta_{j} - \frac{1}{1 - \lambda_{i} - \lambda_{j}} \Delta R \Delta \tau_{j} = \frac{\lambda_{i}}{1 - \lambda_{i} - \lambda_{j}} \Delta \theta_{i} + \frac{1 - \lambda_{i}}{1 - \lambda_{i} - \lambda_{j}} \Delta \theta_{j} - \frac{1}{1 - \lambda_{i} - \lambda_{j}} \Delta R$$

$$(12)$$

次に弾塑性の判定について述べる。

部材が完全弾塑性的な挙動を示すときには、部材が降 伏して曲げモーメントmが降伏モーメントm₂に達し、 塑性ヒンジが発生すると、いわゆる塑性回転角が生じ、 以後は塑性回転角 τ_{ρ} が幾何学的に得られる。この塑性 回転角を用いて、弾性から塑性、塑性から弾性への判定 を行う方法が一般的である。このため図 4 --(a)に示すよ うに、材端に生ずる回転角 τ は弾性回転角 τ_{ie} と塑性回 転角 $\tau_{i\rho}$ を有し、存在曲げモーメントm_i と塑性回転角 $\tau_{i\rho}$ の関係を R. W. Clough⁽⁸⁾は図 4 --(c)のように仮定し た。すなわち図 4 --(c)において $\Delta \tau_{\rho} = 0$ で、弾性となり、 半剛性ヒンジ係数 k は k = ∞となり、塑性流れのときは

と塑性回転角 (R. W. Clough)

図5 塑性ヒンジ機構と復元力持性

 $\Delta \tau_{p} > 0$ で, k = 0 となる。ところが部材が完全弾塑性でなく、ヒビ割れモーメントに達して剛性が低下し、半剛性ヒンジのようになり、曲げモーメントは増加する。この場合は塑性ヒンジ機構を拡大解釈し存在曲げモーメントと塑性回転角の関係は図4-(d)に示すようになるものとする。

これは塑性ヒンジ機構の撓性 $\frac{H}{4EIk_1}$, $\frac{H}{4EIk_2}$ ((1), (2)式で示す)が弾性のときは, k_1 , $k_2 = \infty$ で, 剛性 $\frac{4EIk_1}{H}$, $\frac{4EIk_2}{H}$ は∞で, 塑性のときは, k_1 , $k_2 = 0$ で,

剛性 $\frac{4EIh}{H}$, $\frac{4EIh}{H}$ が0となる代りに 0 < k_1 , $k_2 < \infty$ の値に相当する分だけ存在モーメントが増加することを 意味する。換言すれば(9)式によって得られた存在モーメ ントmがヒビ割れモーメント m_e に達した後は、増分存 在モーメント Δm による増分塑性回転角 $\Delta \tau_P = (H/4EI)$ $k) \Delta m$ (0 < $k < \infty$)が生じ、 $\Delta \tau_P$ を逐次加えて塑性回 転角 τ_P が得られる。そして $\Delta \tau_P = 0$ のとき、弾性となり、 $m = m_g$ のとき塑性ヒンジが生じ、それ以後は図4 --(c) と同じ挙動を示す。なおせん断変形に対する塑性化はせ ん断部材角Rがある値 (例えば R=0.25×10⁻³ rad.) に 達したときに降伏し、その後は Bi-Linear または Tri-Linear 型の履歴を画くものと仮定して弾塑性の判定を 行えばよい。

ところで塑性ヒンジ機構における材端モーメント(m) と回転角(τ_{b})の関係および部材の材端モーメントと回 転角(τ)の関係を示せば、図5のようになる。 部 部 記 降伏モーメント 剛 性 (t·m/rad)

	村		((())))			(rau)
材	番号	号	miy	K _{i1} (10 ³)	${ m K}_{i2}~(imes10^3)$	$\tau_{iy}(\times 10^{-3})$
	1	$-i^{1}$	13.0	1.376	0.550	9.45
l	1	j^1	13.0	13.0 1.680 0.67		7.74
-275.	2	i2	13.0	1.376	0.550	9.45
<i>ч</i> ж;	2	j 2	13.0	1.680	0.674	7.74
	,	i 3	8.8	0.772	0.310	11.4
	5	j ³	8.8	0.945	0.379	9.30
		j^{+}	11.3	3.100	1.240	3.64
	4	i 4	11.3	1.460	0.584	7.74
	5	j\$	12.3	1.840	0.737	6.68
	3	i ^s	12.3	2.160	0.866	5.70
	6	j 6	12.6	1.680	0.673	7.50
i-i-i-	0	i 6	12.6	2.420	0.970	5.21
Υ.Γ.	7	j7	4.5	0.781	0.275	5.76
	'	i7	4.5	0.614	0.275	7.34
	0	j ⁸	5.2	0.688	0.242	7.58
	0	i *	5.2	0.688	0.242	7.58
	0	j9	5.9	0.662	0.233	8.91
	9	i9	5.9	0.718	0.233	8.91

表1 材端モーメントと回転角

層	絶対変位 (cm)	層間変位 (cm)	絶対加速度 (<i>ž</i> + <i>x</i> _i)	質点外力 (t)	せん断力 (t)	転倒モーメ ント(tm)					
3	37.942	12.236	5130.71	22.58	22.58	67.70					
2	26.444	14.973	3683.57	16.21	32.00	163.70					
1	12.035	12.035	2602.87	11.45	40.20	266.30					
	磁性应效值										

	AT LEASE AND DE											
層	絶対変位 (cm)	層間変位 (cm)	絶対加速度 (<i>ž</i> + <i>x</i> _i)	質点外力 (t)	せん断力 (t)	転倒モーメ ント(tm)						
3	22.642	4.601	1939.99	8.536	8.536	25.608						
2	18.563	9.128	1742.59	7.667	12.449	54.219						
1	9.458	9.458	2007.64	8.834	16.512	100.317						
						and the second se						

^{弹塑性応答値} 表 2 最大応答値

架構に三角形分布の外力が作用するときの各部材の反曲 点を計算して降伏変位を求める。このようにして計算し た端部モーメント *mi* と回転角*ti*は表1のようになる。 また弾性応答解析のための剛性マトリックスは,次式で 与えられる。

	10.244917	-5.610546	0.9595413
[K] =		7.9125247	-3.5276146
			2.7093325

減衰常数については、減衰マトリックスは剛性マトリ ックスに相似(振動数に比例)と仮定し、1次の減衰常 数は $_{1h} = 0.01$ とした。また地震動は EL-CENTRO, 1940, NS成分,最大加速度 $a_{max} = 1000^{GAL}$,継続時間 $T_d = 5.0^{sec}$ とし、計算時間刻み $\Delta t = 0.002^{sec}$, とし、解 析は加速度増分方式の線型加速度法によった。

この振動系の固有周期は、1次、2次、3次に対して 夫々₁T=0.59^{sec}、₂T=0.189^{sec}、₃T=0.106^{sec}である。

解析結果として最大応答値を表2に示す。表2は弾性 応答値と弾塑性応答値を示すが、これより部材の降伏に 伴う塑性ヒンジにおけるエネルギー吸収がかなり効果的 に作用していることが明らかである。また最大値近傍の ある時刻における架構の瞬間応力状態と,変形状態を弾 性,弾塑性夫々に対して図7に示した。

降伏回転角

さらに各部材端における存在モーメント(m)と塑性 回転角(τ_p)および自動的に計算の結果得られた存在モ ーメント(m)と回転角 τ の関係について、1層柱頭と 2層の梁について、図8-(a)、図8-(b)に示した。 3.2. RPC(鉄筋コンクリート・プレキャスト構造) 11層建物の解析

解析の供した建物は図9一(a)に示すように RPC 11 層の 桁行架構である。解析は便宜上1ユニットのみを抽出し, 梁に剛域を考慮して,図9一(b)に示すように柱脚固定の ラーメンに抽象化する。

柱・梁は → 形の RPC 部材から成り, 柱断面は各 層すべて55cm×90cm (巾×丈),梁断面は2層は40cm×70 cm (巾×丈),3層以上の層は,40cm×55cmである。 (i) 解析の準備(等価せん断型モデル)

建物の材料の特性は、コンクリートは $Fc = 350 \text{kg/cm}^2$, E=2.8×10²t/cm², G=1.2×10²t/cm², 鉄筋はSD35 以上のように(7)式を用いて架構全体の増分剛性マトリ ックスを算定し、これより線形加速度法等の手法によっ て応答解析を行えば各節点における増分変位が得られる。 すでに述べたように幾何学的関係から塑性化する位置の 増分回転角 $\Delta \tau_i$, $\Delta \tau_j$ が決まり、増分モーメント Δm_i , Δm_j が(9)式より 求められる。部材の存在モーメント m_i , m_j は増分モーメント Δm_i , Δm_j を逐次加えて得られる。

応答解析における減衰マトリックスは、上部構造の振 動、ロッキングおよびスウェイ振動を伴うので本論では 次のように表わす。

$$[C] = \begin{bmatrix} C_{\theta} + \{I\}^{T}[H]^{T}[C]_{s}[H]\{I\} \{I\}^{T}[H][C]_{s}\{I\} - \{I\}^{T}[H]^{T}[C]_{s}\} \\ C_{0} + \{I\}^{T}[C]_{s}\{I\} - \{I\}^{T}[C]_{s} \\ [C]_{s} \end{bmatrix} \end{bmatrix}$$

$$\mathbb{Z} \subset \mathbb{K} \{\mathbf{I}\}^{\mathsf{T}} = \{1, 1 \cdots 1\}, \ [\mathbf{H}] = \begin{bmatrix} \cdot & \cdot & \\ & \cdot & \mathbf{H}_i \\ & & \cdot & \cdot \end{bmatrix}$$

[H]:基礎からの高さのマトリックス

C_θ : ロッキング振動に関連する減衰常数

11

C。 : スウェイ振動

[C]s :上部構造の減衰マトリックス

上部構造の減衰マトリックスは次のような考え方があ ることを参考に示す。

振動数に比例

$$[\mathbf{C}]_{s} = \frac{2_{1} h}{r \omega} [\mathbf{K}]_{s}, \quad s h = \frac{s \omega}{r \omega} r h \quad (\mathbf{s} = 1, 2, \dots n)$$

- (2) 質量と剛性の一次形式
 [C]_s = α[M]+γ[K]_s, sh=<u>α1</u>/2 sω+shr
- (3) 直交減衰マトリックス $[C]_{s} = [M][\sum_{s=i,j,k,\dots} s\zeta\{s\phi\}\{s\phi\}^{T}][M], \quad (i, j, k)$...; 任意の次数) $s\zeta = \frac{2shs\omega}{\{s\phi\}^{T}[M]\{s\phi\}}$
- (4) 履歴減衰マトリックス
 [C]_s = 2h[√M][P][ω][P]^T[√M], ([P]: 直交マト リックス)
 尚簡単なブロックチャートを附録に示す。

3. 解析例

3.1. 鉄骨構造3層, 1スパン架構

簡単な例として図6に示すような鉄骨構造3層,1スパンの架構について解析する。

架構の各部材断面,断面の諸常数,各層の質量,降伏 モーメントおよび全塑性モーメントは図6に示す。

各部材の材端モーメントmと回転角 τ の関係は,各部 材の降伏変位 τ_{iy} を計算してこれより求めた。この場合

図6 解析モデル

	柱																																									
			柱	荷重	[断		面	性	能																																
	断面	寸法		(ton)		А		I	M _c	M_y	断面リスト																															
層			W	ΣW	. (cm ²)	(c	m ⁴)	(t•m)	(t•m)																																
11	55 ×	< 90	27.4	27.4	0.51	565×10^{4}	0.358	81×10^{7}	35.6	65.7	2 - D 32																															
10	1		21.6	49.)	1	/	ļ	39.5	77.2	1																															
9			1	70.0	5				43.4	88.9																																
8				92.1	!				47.4	99.7																																
7				113.	3				51.1	110.4																																
6				135.4	L				55.0	121.0																																
5				157.0	1				59.4	131.2																																
4				178.0	;				63.2	141.0																																
3		'	, r	200.2	!				67.2	150.7																																
2	55×	< 90	21.6	221.8	,	r	1		71.1	164.1	ł																															
1	55 ×	< 90	23.4	245.4	0.51	0.51565×10*		31×10 ⁷	79.1	178.9	2 - D 32																															
· · · · · · · · · · · · · · · · · · ·																																										
					断	面		性	能																																	
	断面寸法 A		A		I	I.	(*)	Mc	M_y	断面リスト																																
層	(cm ²)		()	cm ⁴)	(CI	m*)	(t•m)	(t•m)																																		
R	40	×55	0.2	4065×10	0.619	0.61927×10^{6}		0×10 ⁶	8.7	27.2	2 — D 32																															
11			0.2	4437	0.63	0.63134		50	8.9	32.0	2-D32 1-D19																															
10			0.2	5097	0.65	272	0.16880		9.2	40.8	3 - D 32																															
9			0.2	5747	0.673	378	0.1839	90	9.5	49.1	3 - D 35																															
8			0.2	6446	0.696	542	0.2003	3	9.8	58.5	3 - D 38																															
7			0.2	7191	0.720)55	0.2178	3	10.1	68.5	3 - D38 2 - D19																															
6			0.2	7763	0.739	910	0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314		0.2314 10.4		75.8	3 - D38 2 - D25
5			0.2	8232	0.754	130	0.2426	;	10.6	82.0	$\begin{array}{c} 3 - D41 \\ 2 - D22 \end{array}$																															
4			0.2	8543	0.764	137	0.2501		10.7	86.0	$3 - D41 \\ 2 - D25$																															
3	40	×55	0.2	8543	0.764	137	0.2501		10.7	86.0	$\begin{array}{c} 3 - D41 \\ 2 - D25 \end{array}$																															
2	40	×70	0.3	3191	0.147	763×10 ⁷	0.39963		16.3	91.0	$\begin{array}{r} 3 - D38 \\ 2 - D19 \end{array}$																															

表3 柱・梁の断面及断面性能

(*) ヒビ割れ発生後の等価断面2次モーメント

表4 復元力特性(等価せん断型モデル)

	等	価 剛	性	而打	カ	変	位
	初 期	2 次	3 次	ヒビ割れせん	降伏せん断力	ヒビ割れ変位	降伏変位
層	$k_1(t/cm)$	<i>k</i> ₂ (<i>t</i> /cm)	k ₃ (t/cm)	断力 Q _c (t)	$Q_y(t)$	$\delta_c(\text{cm})$	$\delta_y(cm)$
11	54.99	12.55	0	9.78	32.00	0.178	1.947
10	63.08	17.81	0	6.67	26.94	0.106	1.244
9	65.64	20.34	0	6.89	33.26	0.105	1.412
8	67.31	22.73	0	7.13	39.81	0.106	1.544
7	68.89	24.41	0	7.37	47.00	0.107	1.608
6	70.41	25.99	0	7.59	53.41	0.108	1.871
5	71.91	27.64	0	7.78	58.43	0.108	1.941
4	73.94	29.74	0	7.89	62.22	0.107	1.934
3	78.57	33.39	0	7.93	63.70	0.101	1.771
2	96.92	42.90	0	10.00	67.61	0.103	1.446
1	149.64	79.24	0	30.70	85.97	0.205	0.903

析を行った結果, 1次固有周期₁T=0.77033^{sec}, 2次固 有周期₂T=0.26618^{sec}, であった。(高次固有周期及振 動モードは省略)

曲げせん断型モデルの応答解析結果を表7,および図 10に示す。

表7は応答解析結果として,架構の絶対変位,層間変 位,層せん断力,層せん断力係数,節点回転角,ヒビ割 れ塑性率および降伏塑性率等の最大値を示した。また図 10は柱・梁の曲げモーメント,柱・梁の塑性化の状況お よび架構の変形状態を示す。尚等価せん断型モデルの応 答結果は省略する。

(v) 解析結果の考察

曲げせん断型モデルの応答量と等価せん断型モデルの 応答量との比較を行うと次のようになる。図11は絶対変

図8 存在モーメントと塑性回転角及回転角の関係

ト (M) と部材の回転角 (τ) との関係⁽¹¹⁾がTri-Linear 型の復元力を用いる。すなわちヒビ割れモーメント(M_c), 降伏モーメント (M_y), 初期剛性Sおよび剛性低下率 a_y を柱,梁部材の夫々に対して表5に示す。尚表5にヒビ 割れ回転角 τ_c ,降伏回転角 τ_y も示した。ところで鉄筋コ ンクリート構造計算規準同解説⁽¹¹⁾によれば部材のモーメ ント (M) と部材回転角 (τ)の関係は,部材に逆対象モ ーメントが作用する場合で,反曲点がつねに一定(し かも中央)としているが,実際の部材については、とくに柱 の反曲点がつねに変動するものである。このためあらか じめ設定した柱部材のTri-Linear型のモーメントと部材 回転角の関係が実状に合わなくなる。それゆえ本論で示 す塑性ヒンジ機構の関係 $m \sim \tau_p$ の関係を用いて繰返し 載荷における弾塑性のチェックを行う。

(iii) 解析の内容

この解析においては、応答解析としてすでに発表した せん断型モデルに対する解析法⁽¹²⁾と本論において述べた 曲げせん断型モデルの塑性ヒンジ機構を考慮した解析法 の両者の方法について行った。解析内容を整理して表 6 に示す。

(iv) 解析の結果

固有周期は等価せん断型モデルについて、固有振動解

図9-(a) 精行方向フレーム 図9-(b) 解析モデル 図9 解析モデル

図7-(a) 弾性応答における変形と応力(最大値近傍)

図7-(b) 弾塑性応答における変形と応力 (図中の())内の値は最大値) (t=5.00secのとき、 a=342.093gal、EL-CENTRO、1940)

を使用し、 $\sigma_y = 3.5t/cm^2$, $E = 2.1 \times 10^3 t/cm^2$ である。 建物の重量(柱荷重),柱・梁部材の断面および断面性 能等は表3に示す。

応答解析に用いる復元力特性は次のように算定した。 すなわち剛性はベース・シャー係数C=0.25,逆三角形 震度分布として設計用外力を計算し,図9-(b)に示す解 析モデルについて架構解析を行った⁽¹⁰⁾この結果より,初 期剛性 k_1 ,梁のヒビ割れ発生後の剛性 k_2 が求まる。こ れらの値を表4に示す。ここにヒビ割れせん断力,降伏 せん断力は、節点に集る梁のヒビ割れモーメントの和を、 節点に集る柱脚と柱頭に剛比の割合に分配し、これより ある階の柱頭、柱脚のモーメントの和を階高で除して求 める。また降伏せん断力を計算する場合この例では梁の 降伏モーメントのほうが柱の降伏モーメントよりも小さ いので梁崩壊形式となる。

(ii) 解析の準備(曲げせん断型モデル)。

材料の特性,建物の重量および断面の性能等は表3に 示す。各部材の復元力特性については,部材のモーメン 位,層間変位,せん断力およびせん断力係数等を示す。 すなわち地震動がEL-Centroの場合には曲げせん断型の 応答量よりも等価せん断型のそれが大きく,地震動が Hachinoe の場合には等価せん断型の応答量が曲げせん 断型のそれよりも大きいことが多いが大差ない。しかし 層間変位については,地震動がHachinoe の場合には, 曲げせん断型と等価せん断型の応答量が入り乱れている。

次に曲げせん断系に関して,柱や梁の部材回転角の降 伏塑性率を図12に示す。ここに柱については便宜上柱頭 の塑性率と柱脚の塑性率の平均値を採った。さらに各層 の層間変位における柱の部材角と層間変位,節点回転角 と層間変位の関係を図13に示す。この結果によれば,層 間変位に影響を及ぼす主なる要因は,節点回転角である ことがわかる。そしてこの傾向は上層程著しく,下層で は柱の部材角の影響もかなり大きく,節点回転角と部材 角が層間変位に関係する割合が同等ぐらいになることも ある。

尚地震動の最大加速度を 300gal とし, 地震動として EL-Centro および Hachinoe を作用させた場合について, 時系列応答として時刻 $t = 3.0 \sec 2 10 \sec における柱,$ 梁の応力と変位の瞬間値を図14(a), 図14(b)に示した。

4. 結 論

本論文は構造物における柱・梁部材の塑性化を単純塑性 解析理論にもとづいて地震応答解析を行う方法を示した ものである。さらに例題によって,この解析法の妥当性 を示し,若干の考察を行った。

この解析法によれば,部材のヒビ割れ,降伏の状況, 各時系列における応力や変形の状態を明白に把握できる。

表5 柱・梁部材の復元力特性(曲げせん断型モデル)

		ヒビ割れ	モーメント	降伏モ・	-メント	BULLATIN	771 111 1211 141.	ヒビ割れ回転角	降伏回転角
		$M_c(t \cdot m)$	(*) M (t, m)	$M_y(t \cdot m)$	(*) M.(t*m)	剛性低下挙	初期刚性	$\tau_c(rad)$	$\tau_y(rad)$
		フェイス	節点端	フェイス	節点端	αy	$S(t \cdot m/rad)$	$\times 10^{-3}$	$\times 10^{-3}$
	11	31.06	39.01	51.60	64.80	0.111	223259.56	0.175	2.609
	10	34.30	43.08	60.89	76.46	0.115	"	0.193	2.291
	9	37.54	47.14	69.94	87.83	0.118	"	0.211	.3.339
+ 3 -	8	40.78	51.21	78.74	98.89	0.121	"	0.229	3.657
111	7	44.02	55.28	87.31	109.64	0.124	"	0.248	3.948
	6	47.26	59.35	95.63	120.09	0.128	"	0.266	4.213
	5	50.50	63.42	103.71	130.24	0.131	"	0.284	4.454
	4	53.74	67.49	115.55	145.11	0.134	"	0.302	4.840
	3	56.98	71.56	119.14	149.62	0.138	"	0.321	4.872
	2	60.22	75.63	126.49	158.85	0.141	223259.56	0.339	5.051
	1	63.76	82.55	134.25	173.82	0.144	196032.78	0.421	6.138

		ヒビ割れ	モーメント	降伏モ・	ーメント	mailed for any day	day to Denote Lat	ヒビ割れ回転角	降伏回転角
		$M_c(t \cdot m)$	$M_c(t \cdot m)$	$M_y(t \cdot m)$	$M_y(t \cdot m)$	剛性低下率	初期剛性 S(tam/rad)	$\tau_c(rad)$	$\tau_y(rad)$
		フェイス	剛域端	フェイス	剛域端	ay	3(1• m/ Tau)	$ imes 10^{-3}$	$\times 10^{-3}$
	R	7.61	8.06	20.01	21.18	0.213	20996.44	0.384	4.745
	11	7.76	8.21	23.63	25.01	0.234	21405.68	0.384	4.999
	10	8.02	8.49	30.01	31.78	0.253	22130.57	0.384	5.672
202	9	8.27	8.76	36.17	38.30	0.272	22844.61	0.384	6.167
*	8	8.56	9.06	43.09	45.62	0.293	23612.22	0.384	6.598
	7	8.62	9.13	47.46	50.25	0.301	2443.04	0.374	6.838
	6	8.64	9.15	50.28	53.23	0.306	25059.29	0.365	6.944
	5	8.93	9.45	56.14	59.44	0.326	25574.65	0.370	7.120
	4	8.93	9.45	57.57	60.95	0.329	25916.08	0.365	7.745
	3	8.93	9.45	57.57	60.95	0.329	25916.08	0.365	7.745
	2	13.99	15.04	68.43	73.55	0.269	49307.83	0.305	5.540

* フェイスモーメントより反曲点を中央と仮定して節点端モーメントを求める。

表6 解析内容一覧

解析モデル	作用地震動	作用地震動の 最 大 加 速 度	減衰常数(,h)	積分刻み (sec)	
	EL-CENTRO, 1940, NS	300 mal	0.05	1/100	
空屈止ノ返刑	HACHINOE, 1968, EW	500 gai	0.05	1/100	
寺価セん断型	EL-CENTRO, 1940, NS	450 col	0.02	1 /100	
	HACHINOE, 1968, EW	450 gai	0.02	1/100	
	EL-CENTRO, 1940, NS	200 mol	0.00	1 / 400	
けいようとく Nic 开II	HACHINOE, 1968, EW	500 gai	0.02	1/400	
曲りもんめ堂	EL-CENTRO, 1940, NS	450 mol	0.00	1/100	
	HACHINOE, 1968, EW	450 gai	0.02	1/400	

表7(c) 曲げせん断型応答解析結果(*1)(a^{max}=450gal, EL-CENTRO,1940, NS)

		_	_								_				
住 帮(*3)	豪	$\mu_{B,N}$	剛域猫	0.774	0.844	0.881	0.895	0.869	0.841	0.855	0.977	0.778	0.660	0.680	
降伏塑	柱頭	µc.y	柱脚	0.144	0.359 0.145	0.243 0.118	0.196 0.107	0.187	0.210 0.118	$0.263 \\ 0.127$	0.492 0.117	0.153 0.168	0.106 0.252	0.110 0.530	
退性 率(*2)	嶽	JH 8.0	剛域端	9.571	10.992	13.032	14.404	14.948	15.391	16.258	18.831	16.506	13.271	12.347	сњъ,
ヒビ割九豊	柱頭	µc.c	柱脚	2.158 1.162	4.260 1.721	3.845 1.861	3.117 1.713	2.976 1.870	3.333 1.870	4.122 1.785	7.883 1.869	2.321 2.546	1.576 3.761	1.608 7:727	した。 ナナ
目転角	豪	開域端で	(×10 ¹ rad)	3.673	4.218	5.000	5.522	5.734	5.752	5.937	6.959	6.022	5.107	3.766	ミ角から算け
部材	柱頭	; 重世	(×10 rad)	0.377 0.203	0.822 0.332	0.812 0.393	0.715 0.393	0.737 0.463	0.886 0.497	1.171 0.564	2.383 0.565	0.744 0.816	0.534 1.274	0.677 3.254	1、降伏回転
層間部材角	R		(×10 ³ rad)	3.637	4.502	5.123	5.417	5.462	5.426	6.299	8.524	5.242	4.487	3.254	割れ回転角
節点回転角	θ		(×10 °rad)	3.262	3.746	4.440	4.904	5.092	5.108	5.272	6.180	5.348	4.535	3.393) sec されたヒビ
唇せん断力係数	Q(1)		<u></u>	16.831 0.614	25.269 0.516	31.331 0.444	35.103 0.381	37.535 0.330	39.319 8.290	40.476 0.258	40.820 0.229	44.623 0.223	48.323 0.218	52.353 0.213	<i>Δt</i> = 1/400 に示す設定
層間変位	6		(cm)	0.982	1.215	1.383	1.463	1.475	1.465	1.701	2.301	1.415	1.211	1.001	1 <i>h</i> =0.02, *3) 表5
絶対変位	п		(cm)	12.796	12.142	11.369	10.420	9.311	8.042	6.772	5.336	3.532	2.158	1.001	(* 1) (* 2), (
	180			Ξ	10	6	∞	7	9	5	4	en	2	1	

(*2), (*3) 表5に示す設定されたとビ割れ回転角、降伏回 $\mu_{cc} = \frac{\tau_c}{\tau_{cc}}, \quad \mu_{ec} = \frac{\tau_s}{\tau_{ec}}, \quad \mu_{e,y} = \frac{\tau_s}{\tau_{ev}}$

表 7 (d) 曲げせん断型応答解析結果 (*1) (amx = 450 gal, HACHINOHE, 1968, EW)

性率(*3)	梁 Her	副英端	0.816	0.942	1.130	1.464	1.741	2.223	2.802	2.970	2.671	2.232	1.981
降伏塑	住頭μい	朝	0.218 0.116	0.628 0.155	0.696 0.128	0.763 0.145	0.836 0.294	0.701 0.359	0.421 0.417	0.322 0.389	0.275 0.624	0.245 0.960	0.169 1.517
雙性率(*2)	来 来	團域鑑	10.092	12.266	16.707	23.549	29.953	40.680	53.272	57.231	56.690	47.378	35.988
ヒビ割れ登	柱頭 #c.c	柱脚	3.257 1.156	7.458 1.840	11.001 2.022	12.159 2.315	13.335 4.689	11.105 5.695	6.597 6.537	5.151 6.236	4.181 9.482	3.649 14.321	2.460 22.105
回転角	梁 剛域端r _e	$(\times 10^{-3} rad)$	3.873	4.707	6.410	9.028	11.490	15.203	19.454	21.150	20.682	17.285	10.977
部村	柱頭 柱脚 ⁷ c	$(\times 10^{-3} rad)$	0.569 0.202	1.439 0.355	2.323 0.427	2.789 0.531	3.302 1.161	2.952 1.514	1.874 1.857	1.557 1.885	1.340 3.039	1.236 4.851	1.036 9.309
唇間部材角	ы	$(\times 10^{-2} rad)$	4.008	5.613	7.975	10.331	12.743	16.418	19.103	198.61	18.334	14.725	9.309
節点回転角	θ	$(\times 10^{-3} rad)$	3.439	4.180	5.692	8.017	10.203	13.501	17.275	18.782	18.366	15.349	9.890
層せん断力係数	Q(1)	(C)	15.244 0.556	25.163 0.514	32.903 0.466	41.452 0.450	48.392 0.425	53.286 0.394	57.024 0.363	61.166 0.342	65.262 0.326	69.477 0.313	74.413 0.303
層間変位	6	(cm)	1.082	1.515	2.153	2.789	3.440	4.433	5.158	5.362	4.950	3.976	2.863
絶対変位	п	(cm)	36.206	35.319	34.099	32.048	29.963	26.574	22.189	17.084	11.762	6.835	2.863
	R.		П	10	6	~	2	9	5	4	ŝ	2	п

表7(a) 曲げせん断型応答解析結果(*1)(ammx=300gal, EL-CENTRO, 1940 NS)

$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	 層間変位	醫社ん能力係数	節点回転角	層間部材角	部村臣	回転角	ヒ ビ割九璽	性率(*2)	降伏塑	性率(*3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 ŝ	Q(f)	θ	Я	柱頭 柱間 ^r c	梁 剛域端re	柱頭	深 世 6.0	柱頭 μ _{ων}	深 He.v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 (cm)	<u>(c</u>	(×10 ³ rad)	(×10 ³ rad)	(×10 ² rad)	$(\times I0^{-3}rad)$	料理	剛域端	柱開	剛域端
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 0.620	12.125 (0.443)	2.011	2.297	0.296 0.186	2.265	1.694 1.065	5.902	0.113 0.071	0.477
	 0.730	17.498 (0.357)	2.401	2.704	0.408 0.232	2.703	2.115 1.202	7.043	0.178 0.101	0.541
	0.821	21.217 (0.301)	2.752	3.402	0.443 0.199	3.099	2.098 0.942	8.077	0.133 0.060	0.546
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.899	24.667 (0.268)	3.039	3.328	0.431 0.201	3.422	1.879 0.876	8.926	$0.119 \\ 0.055$	0.555
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.959	27.714 (0.244)	3.273	3.550	0.405 0.220	3.685	1.636 0.888	9.606	0.103	0.959
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.988	29.563 (0.218)	3.426	3.659	$0.394 \\ 0.268$	3.858	1.482 1.008	10.323	0.094 0.064	0.564
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.977	30.850 (0.196)	3.458	3.619	0.383 0.343	3.894	1.348 1.207	10.663	0.086 0.077	0.561
0.905 23.977 3.176 3.550 3.576 0.780 0.061 0.467 0.805 (0.165) 3.176 3.550 3.576 1.619 9.802 0.061 0.462 0.802 3.0163 3.023 2.972 0.361 3.404 1.619 9.303 0.777 0.407 0.802 3.0183 3.023 2.972 0.361 3.404 2.131 9.330 0.133 0.406 0.638 0.1633 2.052 2.075 0.722 2.075 0.522 2.622 1.240 8.596 0.385 0.473	0.927	31.569 (0.177)	3.330	3.433	0.356 0.406	3.750	1.178 1.343	10.147	$0.074 \\ 0.084$	0.527
0.802 33.905 3.023 2.972 0.361 3.404 1.066 9.330 0.072 0.440 0.802 (0.162) 3.023 2.972 0.722 3.404 2.131 9.330 0.072 0.440 0.638 (0.162) 3.886 2.075 0.522 2.075 2.507 0.638 0.386 0.385 0.473	 0.905	32.977 (0.165)	3.176	3.352	0.250 0.519	3.576	0.780 1.619	9.802	0.051 0.107	0.462
0.638 38.885 (0.158) 2.362 2.075 2.622 2.075 1.240 2.075 8.596 0.085 0.338 0.473	0.802	35.905 (0.162)	3.023	2.972	0.361 0.722	3.404	1.066 2.131	9.330	0.072 0.143	0.440
	0.638	38.885 (0.158)	2.362	2.075	0.522 2.075	2.622	1.240 4.927	8.596	0.085 0.338	0.473

(*2)、(*3) 数5に示于設定されたヒビ製和回転向,際伏回転向から算出した。すなわち、 $\mu_{cc} = \frac{1}{r_{cc}}, \quad \mu_{cc} = \frac{1}{r_{cc}}, \quad \mu_{cc} = \frac{1}{r_{cc}}$

表 7 (b) 曲げせん断型応答解析結果 (*1)(amx=300gal, HACHINOHE, 1968, EN)

主奉(*3)	影	围横指	0.776	0.862	1.023	1.200	1.343	1.454	1.478	1.343	1.137	1.046	0.995	
降伏塑性	柱頭.	位間	0.149 0.077	0.557 0.168	0.449 0.146	0.424 0.130	0.361 0.112	0.316 0.200	0.225 0.307	0.248 0.281	0.126 0.296	0.119 0.479	0.111 0.789	
性 率(*2)	。 考	副域指	9.599	11.227	15.130	19.302	23.097	26.608	28.112	25.872	24.135	22.189	18.078	
ヒビ割れ豊	柱頭.	住期	2.265 1.171	6.614 1.990	7.099 2.331	6.635 2.075	5.755 1.793	5.006 3.171	3.527 4.819	3.970 4.506	1.909 4.493	1.768 7.147	1.622 11.496	
回転角	影響	(×10 ^{° t} rad)	3.682	4.308	5.805	7.400	8.860	9.944	10.266	9.561	8.805	8.095	5.514	
部材回	柱頭 1 c	(×10 ³ rad)	0.389 0.201	1.276 0.384	1.499 0.487	1.552 0.476	1.425 0.444	1.331 0.843	1.002 1.369	1.200 1.362	0.612 1.440	0.599 2.421	0.683 4.841	
層間部材角	R	$(\times 10^{-3} rad)$	3.652	5.071	6.649	8.085	9.199	9.815	9.707	8.993	8.348	7.366	4.841	
節点回転角	θ	(×10 ³ rad)	3.269	3.826	5.155	6.571	7.867	8.830	9.117	8.490	7.819	7.188	4.968	
唇也人筋力係数	Q(1)	(C)	14.224 (0.519)	23.619 (0.482)	32.681 (0.463)	39.750 (0.431)	45.374 (0.399)	49.947 (0.369)	53.124 (0.338)	56.027 (0.314)	58.502 (0.292)	60.884 (0.274)	63.472 (0.259)	1.00
層間変位	6	(cm)	00.986	1.369	1.795	2.183	2.484	2.650	2.621	2.428	2.254	1.989	1.489	0 00
絶対変位	п	(cm)	20.981	20.012	18.687	16.989	14.936	12.599	10.121	7.930	5.703	3.470	1.489	
	BP.		Ξ	10	6	œ	7	9	2	4	ო	2	1	

(*1) 小=0.02、 d/=1/400 sec (*2)、(*3) 表5に示す殻定されたとど割れ回転角,降伏回転角から算出した、すなわち、

 $\mu_{R,N} = \frac{\tau_R}{\tau_{R,N}}$

 $\mu_{e,e} = \frac{\tau_e}{\tau_{e,e}}, \qquad \mu_{k,e} = \frac{\tau_k}{\tau_{k,e}}, \qquad \mu_{e,y} = \frac{\tau_e}{\tau_{e,y}},$

252

参考文献

- Glen V. Berg : The Analysis of Strctural Response of Earthquake Forces : The University of Michigan Engineering Iudustory, May, 1958
- (2) S. L. Lee, D. S. Perelman and J. F. Fleming : Earthquake Response of Inelastic Shear Buildings : Bulletin of Seismological Society of America, Vol.56, No.2, April, 1966.
- (3) Warren R. Walpole and Robin Shapherd : Elasto-Plastic Seismic Response of Reinforced Concrete Frame : ASCE, Vol.95, ST10, Oct., 1969.

- (4) 菅野忠:連層耐震壁を含む高層建物の弾塑性地震応 答解析第1報,日本建築学会論文報告集号外,昭和 41年10月.
- (5) 小堀鐸二,南井良一郎,藤原悌三:弾塑性ジョイン トを持つ架構の地震応答一軸力を考慮した場合一; Proceeding of Japan Eathquake Engineering Symposium, Oct., 1966.
- (6) 小堀鐸二,南井良一郎,藤原悌三:R.O.型弾塑性部 材から成る建築架構の地震応答:日本建築学会大会 学術講演梗概集,昭和46年11月.
- (7) 梅村魁, 滝沢春男:鉄筋コンクリート造骨組の強震 応答解析(1),(2);日本建築学会大会学術講演梗概集, 昭和47年10月.
- (8) R. W. Clough and K. Lee Benuska ; FHA study of Seismic Design Criteria for High Rise Buildings ; A Report Prepared for the Technical Studies Program of the Federal Housing Administration, August, 1966.
- (9) R. K.リブスレイ:マトリックス構造解析入門;培 風館.
- (10) 小高昭夫,堀江文雄;マトリックスを用いた骨組解 析の一考察;日本鋼構造協会第3回大会研究集会, マトリックス構造解析講演論文集,昭和44年5月
- (11) 日本建築学会:鉄筋コンクリート構造計算規準同解
 説;日本建築学会, 1971.
- (12) T. Odaka, T. Suzuki and K. Kinoshita ; Non-Linear Response Analysis of Multi-Story Structures including Rocking and Swaying Vibration Subjected to Earthquake Ground Motions ; Proceeding of III WCEE, Santiago, Chile, Jan., 1969.

(受理 昭和57年1月16日)