Analysis of High-Rate Composting of Organic Waste (2)

Akie TSURUIZUMI, Hiroshi OHTA and Takeo KOBAYASHI

有機廃棄物の高速Compostingの解折(オ2報)

鶴泉 彰恵・太田 洋・小林 武雄

In the previous report, high rate composting of cattle excrements has been analyzed stoichiometrically, and now that of activated sludge from a municipal sewage similarly so that the biochemical process is expressed again physicochemically and chemical engineering, As reported, composting defined to be a process of transformation of an unstable organic system to a stable one by biochemical oxidation catalyzed by enzyme of a microorganism, and the enthalpy change, the redox reaction rate, and amount of the necessary oxygen are calculated to express both the complex reaction stoichiometrically and the activity of the microorganism numerically, so that it is now possible to select the most active one.

1. Introduction

Although activated sludge is now dried, combusted, or reclaimed according to the Law of Waste Treading, several problems are brought about, i, e. consumption of enormous fossil fuels, a huge constraction cost and searching of a place for the plant, air pollution, and malodor pollution. Therefore, it is necessary to survey the activated sludge treatment from the national or gloval stand point of resource or energy economy.

It is discussed in this report that activated sludge is converted into soil improving agent, i, e. artificial humus by utilizing the enzymatic action of the aerobic microorganisms.

Two groups of microorganisms were used, i.e. an activated sludge from Nagoya Municipal Sewage (HORIDOME) mixed with natural soil and cultivated (ASA-1, A series) and ASA-1 (A series) mixed with that in Table 3 in the previous report ¹⁾ (ASA-2, B series), as shown in experimentals and results in the previous report.

2. Experimentals and kesults

2.1 Cultivation of aerobic microorganisms of activated sludge in soil

Environmental Research Center 環境工学研究所

2.1.1 Cultivation in natural soil

As in the previous report, field soil was mixed with sugar to supply free energy for growth of the microorganisms, yeast extract to supply nutrients to build the body, and a micro amount of Bennett's medium Table 1 containng meat juice, and to the culture medium was added activated sludge from Nagoya Municipal Horidome Sewage, and cured at 20-30°C and 50-60% moisture for 1 month.

Table1. Bennett's agar medium (pH 7.3).

Yeast extract Beef extract NZ Amine, type A	1.0g 1.0 2.0
Dextrose (Anhydrous)	10.0
Agar Distilled water	20.0 10000ml

2.1.2 Cultivation and breeding in a liquid medium.

A lg portions of the cultivated soil were taken various places, mixed, 1 g portion was placed on a sugar-sodium nitrate -agar medium Table 2 and kept in an incubator at $40-50^{\circ}$ for 7 days.

Table 2. Sugar-sodium nitrate-agar medium (pH 7.2).

0.5 0.5 0.01 20.0
20.0 000ml
0

The colony was cultured in a liquid medium at 300ml-air/min and 50°C (Fig. 1 in the previous report), transferred on the agar plate and cultured in the liquid medium twice more to acclimate at 50°C, because the group breeded at 50°C was very effective as reported in the previous report.

Table	3.	List	of	fungus.
-------	----	------	----	---------

2.2 Identification of the breeded microorganisms

The microorganisms (ASA-1) breeded in soil consisted mainly of mold and bacillus with some actinomycetes, therefore ASA-2 group are mixture with ASA-1 and showed in previous report microorganisms Table 3 (classified according to their nature), Table 4 (The optimum culture media for their strains).

Fungus	Exp.	sym.
General Compost Bacteria (Actiniomycetes) Aerobic Bacteria	CAA	
Streptomyces thermoviolaceus subsp. pingens	CAA	1
Streptomyces thermoviolaceus subsp. thermoviolaceus	CAA	2
Streptomyces thermovulgaris	CAA	3
Streptomyces thermovulgaris	CAA	4
Streptomyces thermodiastaticus	CAA	5 .
Streptomyces thermonitrificans	CAA	6
Streptomyces thermophilus	CAA	7
Thermoactinomyces glaucus	CAA	8
Thermoactinomyces vulgaris	CAA	9
Thermomonospora viridis	CAA	10
Thermomonospora curvata	CAA	11
Thermopolyspora polyspora	CAA	12
Thermopolyspora rectivirgura	CAA	13
Microbispora aerata	CAA	14
Decomposition of peptone Aerobic Bacteria		
Bacillus subtilis	DPA	1
Bacillus mesentericus vulgatus	DPA	2
Bacillus cereus var. mycoides	DPA	3
Pesudomonas fluorescens	DPA	4
Fermentation of cellulose Aerobic Bacteria		
Cellulomonas gerida	FCA	1
Deodor Bacteria (Actinomycetes) Aerobic Bacteria		
Streptomyces griseus	DSA	1
Streptomyces antibioticus	DSA	2
Streptomyces antibioticus	DSA	3
Crude Bacteria		
Streptomyces A S	ASA	1

Table 4. List of medium and fungus.

Medium	Fungus			
Yeast extract, malt extract, agar (pH 7.3)				
Basco yeast extract	4.0g	CAA	1	
Bacto malt extract	10.0^{-1}	CAA	2	
Bacto dextrose (Annydrous)	4.0	CAA	6	
Bacto agar	20.0	CAA	7	
Distilled water	1000 ml			
Bennett's agar (pH 7.3)				
Yeast extract	1.0g	CAA	3	
Beef extract	1.0	CAA	12	
NZ Amine, type A	2.0	CAA	13	
Bacto dextrose (Anhydrous)	10.0			
Bacto agar	20.0			
Distilled water	1000 ml			
Bennett's agar (pH 7.3)				
Yeast extract	1.0g	CAA	4	
Beef extract	1.0^{-}	CAA	5	
NZ Amine, type A	2.0	CAA	11	
Bacto maltose	10.0	CAA	14	
Bacto agar	20.0	DSA	2	
Distilled water	1000 ml			

5g medium (pH 7.3) Yeast extract Glycerine Calcium carbonate Bacto agar Distilled water	5.0g 50.0 1.0 20.0 1000 ml	CAA CAA CAA	8 9 10	
Bacteria medium (pH 7.2) Bacto peptone Beef extract Sodium chloride Bacto agar Distilled water	10.0g 10.0 3.0 15.0 1000 ml	FCA	1	
Yeast extract, malt extract, agar (pH 7.3) Yeast extract Malt extract Dextrose (Anhydrous) Bacto agar Distilled water	4.0g 10.0 4.0 20.0 1000 ml	DSA	1	
Nutrient agar (pH 7.0) Yeast extract Bacto peptone Sodium chloride Bacto agar Distilled water	3.0g 10.0 2.0 15.0 1000 ml	DPA DPA DPA DPA	1 2 3 4	
Sugar, sodium nitrate, agar (pH 7.2) Sugar Sodium nitrate Potassium dihydrogen phosphate Magnesium sulfate (7H ₂ O) Potassium chloride Ferrous sulfate (7H ₂ O) Bacto agar Distilled water	30.0g 2.0 1.0 0.5 0.5 0.01 20.0 1000ml	ASA	1	

2.3 Inoculation of the identified microorganisms

The group of microorganisms in Table 3 and in ASA-1 were cultured in the optimal liquid medium Table 4 at 50-55°C, and 20ml portion containing (3-4) $\times 10^8$ bodies/ml at the proportional growth stage was inoculated on 5g of pastourized rice bran of 30% moisture, and preserved in an incubator at 5°C.

2.4 Fermentation of an organic waste

2.4.1 Pretreatment of an organnic waste

As an organic waste, a mixture of the above activated sludge and saw dust was used. Saw dust (as moisture controller and C source) was separated from dust and sand, ball-milled to 50-100 mesh, partially hydrolyzed in 0.01N sodium hydroxide at 50°C for 24 hours, filtered, waterwashed, and mixed with the activated sludge dewatered and air-dried for several days in a 400 : $100 \sim 150$ ratio to contain 50-60% moisture.

 $2.4.2\ {\rm Mixing}$ of the organic waste and microorganisms

The organic waste was mixed with its 5% amount of the preserved rice bran inoculated with ASA-1 (A-series) and next series was as follow mixture with the organic waste was mixed with its

5% amount of the preserved rice inoculated with micoorganism in Table 3 and A-series in a 1:1 ratio (B series), but being activated at 30° C for 24 hours just before mixing and pelletized to 1-3mm diameter.

2.4.3 Fermentation procedure

The mixture was filled in about 4/5 height in a 1000ml reaction vessel Fig 1 with metal nets as a bottom and cover (6-10mm diameter porcelain balls' being placed as a layer on the bottom net to allow free access of air) and with a water jacket to circulate water at 50°C, and air preheated at 50°C was passed 100ml/min up flowly for 6 days, the temperature being mesured at the upper, middle, and lower part of the mixture.

2.5 Analytical Results

2.5.1 Elementary analysis, carbon ratio and fermentation yield of the fermentation product.

A small amount of sample for analysis was taken out every 25 hours (RM, 1D, 2D, $\cdots \cdots 6D$ being the sample at lst, after 1, 2, $\cdots 6$ days, respectively as A series and B series), powdered to 100 mesh, dried and a 2mg portion was analyzed elementarily.

In Table 5 and 6, the results as well as the carbon ratio (C/N) and amount of volatilized matter (on the base excluding moisture and ash; being defined as volatile matter and expressed in g-VM) are given, and in Table 7, the fermentation yield. The amount of volatilized matter indicates the loss in weight in

Table 5. Elementary analysis and carbon ratio of original and product system (A series).

	H	С	N	0	C/N
RM 1D 2D 3D 4D 5D 6D	$\begin{array}{c} 6.37 \\ 6.47 \\ 6.49 \\ 6.49 \\ 6.59 \\ 6.51 \\ 6.60 \end{array}$	$\begin{array}{r} 46.42 \\ 47.07 \\ 46.58 \\ 46.22 \\ 47.72 \\ 47.02 \\ 47.39 \end{array}$	$1.51 \\ 1.56 \\ 1.59 \\ 1.59 \\ 1.62 \\ 1.66 \\ 1.71$	$\begin{array}{r} 45.70\\ 44.90\\ 45.37\\ 45.70\\ 44.07\\ 44.81\\ 44.30\end{array}$	30.74 30.17 29.86 29.07 29.47 28.33 27.71

Table 6. Elementary analysis and carbon ratio of original and product system (B series).

	Н	С	Ν	0	C/N
RM 1D 2D 3D 4D 5D	6.52 6.61 6.59 6.39 6.53 6.60	$\begin{array}{r} 47.60\\ 47.87\\ 47.11\\ 46.51\\ 46.98\\ 46.51\end{array}$	$1.48 \\ 1.58 \\ 1.62 \\ 1.76 \\ 1.95 \\ 2.02$	44.40 43.94 44.68 45.34 44.54 44.87	32.16 29.70 29.08 26.43 24.09 23.02
6D	6.52	47.17	2.10	44.21	22.46

Table 7. Yield by fermentation (6 days).

	A series	B series
Original system	230.85 g	233.45 g
Product system	192.86	145.60

each system, i.e. the matter decomposed and lost by fermentation as CO_2 , NH_3 , H_2O and NO_x , so that it is an excellent parameter of degree of the composting.

It is apparent from Table 5, 6 and 7 that the loss in weight proceeds remarkably with lapse of time, being larger in the B-series than in the A-series.

3. Discussion

3.1 Effect of aeration on the aeration culture

The effect of aeration at 100ml/min (actually 100 -300ml/min) was tested on the liquid culture from the liquid film resistance.

The mean radius of action mycetes is about 2.5μ and the oxygen cosumption rate of a bacterium is expressed by the equation.

 $dw/dt = K_L S(C - C^*)$

- w : amount of oxygen transfer (mol)
- t : time (min.)
- K_L : oxygen transfer coefficient on the liquid-fim (cm/min)
- C : oxygen concentration in the bulk culture medium (mol/cm³)
- C* : oxygen concentration on the bacterium surface (mol/cm³)

and as moisture content of the bacteria is 75%

 $\begin{array}{l} dw/dt \!=\! 4.1 \times 10^{-1\,1} m \mbox{ mol } O_2/hr \\ = 1.14 \times 10^{-1\,4} m \mbox{ mol } O_2/sec \end{array}$

When a sphere (a bacterium) or radius r is present in a static liquid, then

$$K_L.r/D=2$$

- r : 2.5 μ
- D : diffusion coefficient of oxygen in the liquid = $1.8\times 10^{-5} cm^2/sec$
- K_L : (2)(1.8)(10⁻⁵)(1/2.5)(10⁴) = 0.114 cm/sec

S : $4\pi r_2 = 7.86 \times 10^{-7} \text{cm}^2$

The difference of dissolved oxgen in the bulk medium and on the bacterium surface is calculated,

$$\begin{split} C-C^* &= dw/dt \cdot 1/K_LS \\ &= (1.14)(10^{-14})(1/0.144)(1/7.80)(10^7) \\ &= 1.27 \times 10^{-7} m \ mol \ O_2/cm^3 \\ &= 0.004 \ mg/l \end{split}$$

The difference is so small the saturation concentration itself should be the driving force and the diffusion of oxygen to the bacteria be independent on the liquid-film resistance at 100 ml/min aeration.

3.2 Relation of composting and enthalpy

3.2.1 Chemical change in composting

Reached a conclusion from the chemical structure model of humus by Tiele and Kettner²), Dragunov. S.S²⁾ and Kasatochkin²⁾.

As the composting proceeds to decrease the component of organic waste and residual molecular was built up stable six-membered structure.

Euthalpy difference between the original and product system and decrease of component between the original and product system may be used as the parameter of this analysis.

3.2.2 Enthalpy difference between the original and the product system

From the data in Table 5, 6 and Table 7, the molecular formulas may be assigned for each system as shown Table 8 and Table 9.

Table 8. Experimental molecular formula of original and product system (A series).

	Molecular formula	Molecular weight	Decreament
RMa	C36H59O26N	921	
1Da	C35H58O25N	892	29
2D _a	C34H58O25N	880	41
$3D_a$	C34H57O24N	863	58
4Da	C 3 4 H 5 6 O 2 3 N	846	75
5Da	C33H54O23N	832	89
6D _a	C32H54O22N	804	117

Table 9. Experimental molecular formula of original and product system (B series).

	Molecular formula	Molecular weight	Decreament
RM _b	C38H61O26N	947	
$1D_{b}$	C35H59O24N	877	70
2D _b	C33H56O24N	853	94
3Db	$C_{31}H_{51}O_{22}N$	789	158
$4D_{b}$	C ₂₈ H ₄₇ O ₂₀ N	717	230
5D₀	C ₂₇ H ₄₅ O ₁₉ N	692	255
6D _b	$C_{26}H_{43}O_{18}N$	657	290

Table 10. |Carbon, 'Hydrogen, Oxygen % in experimental molecular formula.

	Molecular formula	Molecular weight	С%	Н%	0%
RMa	C36H59O26N	921	46.9*	6.4**	45.2***
$6D_a$	$C_{32}H_{54}O_{22}N$	804	47.8	6.7	43.8
RM _b	$C_{38}H_{61}O_{26}N$	947	48.2	6.4	43.9
$6D_{b}$	$C_{26}H_{43}O_{18}N$	657	47.5	6.5	43.8
L	15	2			

*
$$36 \times \frac{1}{921} \times 100$$

** $59 \times \frac{1}{921} \times 100$

$$*** 26 \times \frac{16}{921} \times 100$$

In the present system, the unit carolific value (h) can be caluculated from the decrease in above

organic compound equivalent of the assigned compound as follows:

$$h=127R + 400 \text{ (cal/g-VM)}$$

 $R^{3}= 0.251(2.66 \text{ C\%} + 7.94 \text{ H\%} - 0\%)$

the amount of oxygen necessary to oxidize all the carbon and hydrogen contained to carbon dioxide and water.

The average reaction heat ΔH can then be calculated,

$$\Delta H = \frac{(h \text{ of } RM)(\text{weight of } RM) - (h \text{ of } 6D)(\text{weight of } 6D)}{(\text{weight of } RM) - (\text{weight of } 6D)}$$

the percentage of carbon, hydrogen and oxygen of the compound of molecular formula in Table 8 and 9 being given in Table 10, and R, h and Δ H being caluculated as follows:

Calculation of R,

$$\begin{array}{l} {\rm RM}_{a} \colon {\rm R} = 0.251(2.66 \times 46.9) + (7.94 \times 6.4) - 45.2 = 32.7 \\ {\rm 6D}_{a} \colon {\rm R} = 0.251(2.66 \times 47.8) + (7.94 \times 6.7) - 43.8 = 34.2 \\ {\rm RM}_{b} \colon {\rm R} = 0.251(2.66 \times 48.2) + (7.94 \times 6.4) - 43.9 = 33.9 \\ {\rm 6D}_{b} \colon {\rm R} = 0.251(2.66 \times 47.5) + (7.94 \times 6.5) - 43.8 = 33.6 \\ \end{array}$$

Calculation of h,

 $\begin{array}{ll} RM_a : h &= 127 \times 32.7 + 400 = 4552.9 \\ 6D_a : h &= 127 \times 34.2 + 400 = 4743.4 \\ RM_b : h &= 127 \times 33.9 + 400 = 4705.3 \\ 6D : h &= 127 \times 33.6 + 400 = 4667.2 \end{array}$

Calculation of ΔH ,

$$\label{eq:dHa} \varDelta H_{a} \!=\! \frac{4552.9 \!\times\! 230.85 \!-\! 4743.4 \!\times\! 192.86}{230.85 \!-\! 192.86} \!=\! 3585.8$$

The enthalpy of the product system is smaller by ΔH than that of the original, being the more stabilized or composted, the larger the ΔH . Hence the activity of cluster could be estimated in the order of ΔH ;

$$\Delta H_{b} > \Delta H_{a}$$

and the activity of he cluster would be in order of

B series
$$>$$
 A series

3.3 The reaction (fermentation) rate of the composting

For calculation of the reaction rate, it is most disirable to know the amount of evolved gases as stated in 3.2.1 but actually the composition of the mixed gas changed irregularly time. On the other hand, the compounds in Table 8 and 9 would decomposed so that decrease in the molecular weight may be take as the parameter.

As the reaction is enzymatic, the following factors should be taken into account for the first -order reaction:

the concentrations of enzyme [E] and substrate [S], the temperature, the pH and the presence of promoting and inhiting matters. As stated before, protein is decomposed in the primary stage so that [S] corresponds to the nitrogen concentration. And the reaction can be written,

$$E + S \stackrel{K_1}{\underset{K_2}{\longrightarrow}} ES \stackrel{K_0}{\longrightarrow} P + E$$

 K_1 , K_2 , K_0 : reaction rate constants

p: the reaction product $(E_0)=(E)+(ES)$

E₀: total concentration of enzyme

 $\label{eq:when [S]} \mbox{ is small, the reactin velocity (V) can be written,}$

$$\begin{split} V &= \frac{K_0}{K_m} \left(E_0 \right) \left(S \right) \\ K_m : \frac{(E) \left(S \right)}{(ES)} &= \frac{K_2 + K_0}{K_1} \text{, Michaelis constant} \end{split}$$

and when [S] is large, the V*

$$V^* = K_0(E_0)$$
$$= \frac{V(S)}{(S) + K_m}$$

For S , the N concentraation was adjusted to 1.48 -1.51% in RM as shown in Table 5, 6 and for E , bacteria of almost an equal number was inoculated, and the reaction was carried out at 55° C.

From these data and those in Table 8 and 9, the rate of molecular weight change against the time and hence the reaction rate constants were caluculated as shown in Table 11, and Fig 2. The change in the A series was too small, the reactions were of the first order in the each series, and the reaction rate constants caluculated are as follows:

$$\begin{split} K_{a} &= \frac{0.108}{120 \times 60 \times 60} \times 2.303 = 0.57 \times 10^{-6} \text{ [sec}^{-1]} \\ K_{b} &= \frac{0.319}{120 \times 60 \times 60} \times 2.303 = 1.70 \times 10^{-6} \text{ [sec}^{-1]} \end{split}$$

Thus, the result $K_b > K_a$ shows that the activety of the bacteria is in the order A and B series.

Table 11. Reaction rate of each series.

		А	series					
Time	(hr)	0	24	48	72	96	120	144
Decreament(x) Remain (a-x) ln a/a-x		0 921 —	29 892 0.032	41 880 0.046	158 863 0.065	75 846 0.085	89 832 0.102	117 804 0.136

	Вs	series					
Time (hr)	0	24	48	72	96	120	144
Decreament(x) Remain (a-x) ln a/a-x	0 947 	70 877 0.077	94 853 0.105	158 789 0.183	230 717 0.278	255 692 01314	190 657 0.366

Fig. 2. Reaction rate constant.

3.4 Theoretical oxygen demand for the reaction

The theoretical oxygen demand can be caluculated by the following equation,

Organic compound (VM) of the original system + $O_2 \rightarrow$

that of the product system (Compost-VM) + $\rm CO_2 + H_2O + NH_3$

$$\begin{array}{l} C_{a}H_{b}O_{c}N_{d}+0.5(ny\ +2s+r-c)O_{2}\ \rightarrow \\ nC_{w}H_{x}O_{y}N_{z}+sCO_{2}+rH_{2}O+(d-nz)NH_{3}{}^{4)} \end{array}$$

- $C_aH_bO_cN_d$: molecular formula of the organic compound before the composting.
- $0.5(ny+2s+r-c)O_2$: oxygen demand.
- $nC_w\,H_xO_yN_z\,$: molecular formula of the organic compound after the composting.
- sCO_2 : the amount of carbon dioxide evolved.
- rH_2O : that of water
- r : number of H atom converted into water and ammonia =0.5[b-nx-3(d-nz)].
- $(d\!-\!nz)NH_{\scriptscriptstyle 3}~$: the amount of ammonia evolved.
 - : number of C atom reacted with oxygen =a-nw

With the above relations, the theoretical oxygen demand in each series is calculated;

For the A series,

S

	molecular	molecular	organic com-		
	formula	weight	pound(g-VM)		
RMa	$C_{36}H_{59}O_{26}N$	921	230.85		
$6D_a$	$C_{32}H_{54}O_{22}N$	804	192.86		
	a =36, b =59,	c =26, d =	- 1		
	w = 32, $x = 54$,	y = 22, z =	= 1		

The mol numbers of the compounds before and after the composting,

$$\begin{split} M &= 230.85 / 921 = 0.25 \\ n &= 192.86 / (0.25 \times 804) = 0.96 \\ r &= 0.5 \{ 59 - (0.96 \times 54) - 3(1 - 0.96 \times 1) \} = 3.52 \\ s &= 36 - (0.96 \times 32) = 5.28 \end{split}$$

The oxygen demand (O_a),

$$\begin{aligned} &O_a = 0.5\{\,(0.96 \times 22) + (2 \times 5.28) + 3.52 - 26\} \times \\ &0.25 \times 32 = 36.80 \end{aligned}$$

The material balance,

The original (VM)	230.85 g
Oxygen	36.80 g
Total	267.65 g
The product (VM)	192.86 g
Carbon dioxide	58.08 g
Ammonia	0.17 g
Water	15.84 g
Total	266.95 g

For the B series,

	molecular	molecular	organic com-
	formula	weight	pound (g-VM)
RМь	$C_{38}H_{61}O_{26}N$	947	233.45
$6D_{b}$	$C_{26}H_{43}O_{18}N$	657	145.60
	a = 38, b =	61, c =26,	d = 1
	w = 26, x =	43, y =18,	z = 1

The mol numbers of the compounds before and after the composting,

$$\begin{split} M &= 233.45/947 = 0.24 \\ n &= 145.60/(0.24 \times 657) = 0.92 \\ r &= 0.5\{61 - (0.92 \times 43) - 3(1 - 0.92 \times 1)\} = 10.60 \\ s &= 38 - (0.92 \times 26) = 14.08 \end{split}$$

The oxygen demand (O_b) ,

$$O_{b} = 0.5\{(0.92 \times 18) + (2 \times 14.08) + 10.60 - 26\} \times 0.24 \times 32 = 112.59$$

The material balance,

The original (VM)	233.45 g
Oxygen	112.59 g
Total	346.04 g
The product (VM)	145, 60 m
The product (VIVI)	145.00 g
Carbon dioxide	148.68 g
Ammonia	0.33 g
Water	45.79 g
Total	340.40 g

Thus, the theoretical oxygen demand calculated as above are,

A series : 122.0ml/hr.100g-VM B series : 234.4ml/hr.100g-VM

Then, the order is in

 $O_b > O_a$

The larger the oxygen demand, the large the activity of the cluster,

B series > A series

4. Conclusion

The complex organic waste has been treated on the standpoint of physical chemistry and chemical technology and shown to be more stabilized (composted) with large enthalpy change, reaction rate constant and oxygen demand, so that the activity of cluster could be expressed numerically. It is concluded that

 As the order has been found to be the enthalpy change ∠H_b >∠H_a the reaction rate constant K_b>K_a, and the oxygen demand O_b>O_a the order of activity of cluster should be B series > A series

although some discrepancis are observed.

- (2) The difinition of composting given at the beginning has been proved to be adequate.
- (3) The experimental results and the extent of composting could thus be accurately estimated or compared.
- (4) The composting could be treated scientifically.

References

- A.Tsuruizumi, H.Ohta: A.I.T. No. 14, 335-352 (1979). Analysis of High Rate Composting of Organic Waste (1).
- M.M.Kononov: Organicheskoe Veshesvo Tschvy (1963).
- H.A.Spoehr, H.W.Millner: The chemical composition of chlorella, Effect of environmental condition, plant physiology, 24, 120-149 (1949).
- Linvil G.Rich: Unit process of sanitary engineering, Toppan Print Co., Japan (1961).

(Received January 16, 1980)