キーみぞを有する軸の応力集中について

第1報

伊藤 實•古市裕司

The Stress Concentration of Shafts with End Milled Keyways.

(part 1)

Minoru ITO and Yuuji FURUICHI

銅メッキ応力測定法により、純ねじり応力状態において End Milled Keyway (Keyseat)を有す る丸軸に発生する応力集中について実験的に解析した。まず応力集中箇所を明らかにし、キーみぞ 底の隅角部の曲率半径の変化が応力集中率(形状係数)にどのような影響をおよぼすかを求め、他 のキーみぞの形状を異にする研究者の報告と比較した。つぎに、キーみぞの長さに対する応力集中 率の変化を求め、キーみぞの長さがある値以上になると無限の長さのキーみぞに発生する応力集中 率と同じ値になることを示し、応力集中率に影響をおよぼすキーみぞの長さの最大値を求めた。

1. 緒 言

近時各種の機械は高速化される傾向にあり,機械要素 や構造物の部材が強度的に十分耐えるだけでなく,同時 に軽量に設計されることが必要となってきた。これらの 機械構造物の要素としてよく使われるとともに,破壊に いたる重大な事故原因ともなるキーみぞを有する軸に生 ずる応力の集中を明らかにするため,JIS規格に従っ た形状・寸法で,ねじりモーメントのみが加えられた場 合のキーみぞ底隅角部の曲率半径の変化に対する応力集 中・緩和曲線を求め,さらに,キーみぞの長さを異にす るこれらの値をそれぞれ2箇所の応力集中点について求 めた。

ねじりモーメントを受けるキーみぞを有する丸軸の応 力集中については、H. Quest⁽¹⁾のせっけん膜による研究, M. M. Leven⁽²⁾,西田の光弾性によるもの、大久保⁽⁴⁾の厳密 解、寺田・細野⁽⁵⁾による銅メッキ応力測定法による研究が 発表されているが、軸方向に有限長さを有するEnd Mi -lled Keyway (Keyseat)については、機械部品によく 使われているにもかかわらず、先のM. M. Levenの報告 中にあるだけであまり行われていないようである。この End Milled Keywayは,応力が三次元に分布し、そのう え局所的に大きな応力の集中を示し理論的解析はきわめ て困難であるため,実験的に解明した。

実験方法としては,最大応力の発生する場所が軸表面 であり,切欠形状も複雑なこの種の実験に最も有効と考 えられる銅メッキ応力測定法によった。

2. 実験方法

2・1 銅メッキ応力測定法 試験片に表1に示す 条件で銅メッキした後,繰返し荷重を加えると,同一メ ッキ液でメッキしたものは常に一定の繰返し数で黒かっ 色のはん点が出はじめる。メッキ法はこの現象を利用し たもので,はん点発生までの応力繰返し数から,その部 分の応力を知る方法で詳細は文献7)にある。

表1 メッキ液の組成およびメッキ条件

		アルカリメ	ッキ液	酸メ	ッキ液	ź
組	成	CuCN	23g	CnSO4	5H2O	250g
		$\operatorname{Na_2CO_3}$	10g	$H_2 \mathrm{SO}_4$		80g
(H ₂ O	1ℓ当り)	NaCN	30g			
電流密	度mA/cm²	0.	6		30.0	
メッキ	時間(分)	20			15	

2·2 試験所

2・2・1 使用材料 使用材料としては,機械構

造用炭素鋼鋼材 S45C を使用した。この材料の化学成分 を表2に示す。

使用材料の熱処理および機械的性質を表3に示す。

	表2	! 化	学员	5 分	(%	6)	
С	Si	Mn	Р	S	Cu	Ni	Cr
0.48	0.29	0.78	0.02	0.021	0.21	0.07	0.18

	表3 熱処理·機械的性質						
熱	\$	UL.	理	(1)	900±2℃ 40分 空冷		
				(2)	860±2℃ 40分 油冷		
				(3)	650±2℃ 40分 空冷		
縦	弾	生係	数	E kgf/mm²	2.14×10^{4}		
横	弾(生 係	数	G kgf/mm²	8.22×10^{3}		
上	降	伏	点	$\sigma_{\rm su} \rm kgf/mm^2$	44.1		
下	降	伏	点	$\sigma_{\rm SL} {\rm kgf/mm^2}$	42.8		
引	張	強	さ	$\sigma_{\rm B}{ m kgf/mm^2}$	65.8		
破	断	応	力	$\sigma_{\rm b}~{\rm kgf/mm^2}$	45.6		
伸			び	8 %	26.0		
絞			り	φ %	65.9		

表4 キーみぞ試験片の主要寸法

試 験 片 直 径	Dmm	14.0
キーみぞの幅	b mm	5.0
b / D		0.357
キーみぞの深さ	t mm	3.0
t / D		0.214

1		Υ.	
	а		
· · ·	~	/	

r mm	r / D	ℓ mm	ℓ/b	
0.14	0.010			
0.21	0.015			
0.28	0.020	15.0	3.0	
0.35	0.025			
0.60	0.043		}	

1	1		
	b)	
× *	~		

r mm	r / D	l mm	ℓ/b
		5.0	1.00
	0.0114	7.5	1.50
		10.0	2.00
0.16		12.6	2.52
		14.0	2.80
		16.8	3.36
		25.0	5.00

・2・2 試験片の形状および寸法 図1に較正 試験片の形状・称呼寸法を示し,図2および表4にキー みぞ試験片の形状・称呼寸法を示す。

表4中の(a)は、キーみぞ底の隅角部の曲率半径rの 変化が応力集中率におよぼす影響を求めるための試験片 寸法であり,また(b)はキーみぞの軸方向の長さ1の変 化が応力集中率におよぼす影響を調べるための試験片の 寸法である。

キーみぞの各寸法は、JIS B 1301「沈みキーおよびキ -みぞ」により,軸径D =14mm に適用される寸法に基い て決定した。JIS B 1301 の関連事項を表5に示す。

表5 沈みキーおよびキーみぞ

JIS B1301

D	b	t	r	Ĺ
12をこえ 17以下	5	3.0	0.16~0.25	10~56

mm

2・2・3 キーみぞの加工について 実験の精度 を上げるためには、キーみぞの形状、特にみぞ底の隅角 部の曲率半径 r を精密に加工するエンドミルの刃先形状 は投影機で100倍に拡大して詳しく観察しながら,みぞ 底の隅角部 r が完全な円弧形になるように角を砥いだ。 また試験片を加工するうちにエンドミルの刃先が摩耗し て,曲率半径が変化するおそれがあるので軽切削とし, 切削油を十分与えて切削性をよくして加工した。さらに, 刃先の摩耗度を調べるために3本の試験片を加工した後 に厚さ1.2 mmの鉄板を切削して,みぞの形状を投影機で

_

詳細に観測し曲率半径 r の形状を確認した。一例を図 3 (r=0.28mm)に示したが,曲率半径は所期の形状を示 していることがわかる。

図 3

2・3 実験方法 試験機として,容量10kgf·mの 曲げ・ねじり疲れ試験機を使用し,応力の測定は銅メッ キ応力測定法によった。

2・3・1 較正試験 はん点の発生しはじめる限 界みずみ γ_p の値と,繰返しねじり応力の繰返し数Nとの 関係を示す γ_p ーN曲線を求める必要がある。そのためテ ーパ状の較正試験片を用い(図1参照),一定の両振り繰 返しねじり応力を目的の繰返し数に達するまで加え,読 み取り顕微鏡ではん点の発生境界までの距離Sを精確に 測定して(図4参照),その繰返し数に対する限界せん断 応力 τ_p に相当する点の直径dが求まる。また加えたねじ りモーメントTから、 τ_p と γ_p の値は次式によって求まる。

$$\tau_p = \frac{16 \cdot \mathrm{T}}{\pi \mathrm{d}^3}, \qquad \gamma_p = \frac{\tau_p}{\mathrm{G}}$$

T:試験片に加わるねじりモーメント

d:限界断面における試験片の直径

 τ_p : せん断応力の限界値

- G:下地金の横弾性係数
- γp: せん断ひずみの限界値

2・3・2 応力集中の位置および応力集中率の求め 方 キーみぞ試験片に銅メッキを施した後,一定の両 振り繰返しねじり荷重を加え,メッキ面の応力集中箇所 にはん点が発生し始める状態を顕微鏡で観察して発生時 の応力繰返し数Nを定めた。そして較正試験で求めた γ_p-N曲線から応力集中箇所のひずみγ_pを決定し,応力 集中率はキーみぞのない平滑な丸軸の表面応力に比較し て表示するが,ここではねじりモーメントTを等しくと って比較し,次式により応力集中率βで表わした。

$$\beta = \frac{\tau_{\max}}{\tau_{\circ}}$$
$$= \frac{\pi \cdot d^{3} \cdot G \cdot \gamma_{p}}{16 \cdot T}$$

𝓪max:応力集中点のせん断応力

て。: 平滑試験片の軸表面のせん断応力

3. 実験結果および考察

3・1 較正試験結果 3本の較正試験片にそれぞ れ2.75, 3.25, 3.60kgf・m のねじりモーメントを加えて 較正試験を行い結果を *y*p-N曲線として図5に示す。

3・2 キーみぞ底隅角部の曲率半径と応力集中率 キーみぞの形状のうち幅 b = 5.0 mm, 深さ t = 3.0 mm, 長さ *l* =15.0 mmの有限長さを一定とし, キーみぞ底隅角 部の曲率半径 r を 5 種類変化させた場合の応力集中率 β

No.	D mm	t mm	1 mm	b mm	r mm	r/D	βв	βA
X11 X12 Z15	14.00 14.00 13.99	3.00 3.00 3.00	14.92 14.95 14.95	5.00 5.00 5.01	0.14	0.010	3.70 3.70 3.68	
X04 X06 Z11	14.00 14.00 14.00	2.99 2.98 3.00	14.95 15.05 15.00	5.00 5.00 5.00	0.21	0.015	3.16 3.16 3.18	1.90 1.90 1.90
X01 X02 X03	14.00 14.00 14.00	3.00 3.00 3.00	14.96 14.95 14.95	5.00 5.00 5.00	0.28	0.020	2.90 2.89 2.90	-
X08 X09	14.00 14.00	3.01 3.01	14.89 14.87	4.99 5.00	0.35	0.025	2.72 2.72	
Z10 Z16 Z18	13.95 14.00 13.95	3.00 3.00 3.00	14.96 14.98 14.90	5.01 5.00 5.00	0.60	0.043	2.43 2.43 2.43	-

表 6

の値と試験片の寸法を表6に,また応力集中点の発生位 置を示す詳細を図6に示した。

図6の応力集中点Bについて述べれば,キーみぞ底の

隅角部曲率半径 r の円弧部とみぞ底の直線との接点より やや円弧部よりのみぞ底長手方向のほぼ中央部の点Bに 発生する (このことはLeven による光弾性実験の結果 と一致している),またA点は軸中心線より上下約55度の 箇所で,軸表面よりすこしキーみぞ側面に入った点に発 生する。

縦軸に応力集中率 β を,横軸にキーみぞ底隅角部の曲 率半径 \mathbf{r} と軸直径の比 \mathbf{r} /Dをとって実験点を結び,そ の傾向線を図7に示す。

参考としてLeven,西田による光弾性実験による研究 結果と,寺田・細野による銅メッキ応力測定法による結

果, さらに大久保の厳密解を並記したが, いずれもこれ らの研究結果はキーみぞの長さ*l*を無限長と考えた場合 の値である。

図中の添字A · B は図 6 の応力集中点A · B に対応し ている。

図7の a_B の傾向線は、キーみぞ底隅角部の曲率半径r が小さくなればなるほど、応力集中率 β_B は大となり、逆 にrが大となれば集中率 β_B は小となる緩和傾向を示して いる。図中に一点鎖線で示した範囲はJIS 規格の直径D =14mmに対する曲率半径r =0.16~0.25mmに対応するも ので、rが大なるほど、 β_B は小となり強度上安全側とな る。しかしながらエンドミルの刃先の整形等の問題をと もなうこととなる。

銅×ッキ応力測定法により解析をし、キーみぞの横断 面が比較的近似している寺田・細野の実験結果であるbB 曲線と本実験の a_B 曲線とを比べると、b/D、t/Dとも本 実験のキーみぞの方が大きいにもかかわらず、JIS規格 のrの範囲で a_B 曲線の方が少し低い応力集中率を示して いる。この矛盾についてはキーみぞの長さに起因すると 思われるので後で述べる。

表7

研 究者	2者 規 格 実験方法		b / D	t / D
本実験	JIS	銅メッキ法	0.357	0.214
寺田・細野	DIN	銅メッキ法	0.336	0.202
LEVEN	ASME	光弾性実験	0.25	0.125

 C_B , d_B はそれぞれLeven, 西田が求めたものであるが, 本実験の a_B 曲線とよく相似している。

応力集中点AはEnd Milled Keyway (Keyseat) 特有 の応力集中点でrの影響は少ないと思われるのでr=0. 21mm (r/D=0.015) の一点をもって代表させた。

各規格によって分類すれば表7,図8のごとくになる。 図8の**a**の曲線は図7の破線で示した修正値の曲線をとった。

3・3 キーみぞ長さと応力集中率 キーみぞの幅 b と深さtおよびキーみぞ底隅角部の曲率半径rをそれ ぞれb=5.0mm,t=3.0mm,rはJIS規格の軸径D= 14mmのときの最小値0.16mm(r/D=0.0114)の一定値と し,キーみぞの軸方向の長さlを8種類変化させた場合 の応力集中率 β_{B} と,同じくキーみぞの長さを5種類変化 させた場合の応力集中点Aの集中率 β_{A} を試験片実寸法と 共に表8に示す。

200								
No.	D mm	t mm	b mm	l mm	1/b	1/D	βø	βA
X13 X16 X17 X28 X29 - X30 X19	13.99 14.00 13.99 14.00 14.00 	2.97 3.01 3.01 3.01 3.01 - 2.99 3.00	5.00 5.01 5.01 5.01 5.01 5.01 5.01	5.03 7.43 9.91 12.69 14.09 	1.01 1.49 1.98 2.54 2.82 (3.00) 3.37 5.24	0.36 0.53 0.71 0.91 1.01 (1.07) 1.20 1.87	1.89 2.55 3.03 3.37 3.48 (3.52) 3.57 3.56	
X14 X15 X18 X27 X20	13.99 14.00 13.99 14.00 13.99	2.96 3.02 3.00 2.98 2.99	5.01 5.01 5.01 5.00 5.01	5.01 7.44 9.90 15.05 25.00	1.00 1.49 1.98 3.01 5.00	0.36 0.53 0.71 1.08 1.79	- - - -	1.89 1.92 1.90 1.90 1.90

表 8 中かっこの数値は図 7 の a_8 線においてr/D=0.01 14に対応している応力集中率 β_B を読みとって定めたため 試験片寸法は空白となっている。

図9に縦軸に応力集中率 β を, 横軸にキーみぞの長さ lを幅bで除した値l/bと, lを軸直径Dで除した値l/Dの両尺度を取って表わした。

図 9 について述べれば,応力集中率A_Bは1/bが3.37以上ではほぼ一定値を示し,1/bの値が低くなるときには,

3.37の値を境として急激に低下し,l/b = 1即ち円柱み ぞで β_A の値と等しくなる。この性質が曲率半径 r の変化 に対して鈍感であるものと仮定すれば, キーみぞ長さ lを幅 b で除したl/b が3.37 (l/D = 1.20)以上の値を取 るときは従来発表されている諸研究結果の数値をそのま ま適用してよいと考えられるが,l/b = 3.37以下の場合 はもっと低い応力集中率を示すものと思われる。

先の実験で r を変化させて応力集中率 β_{B} を求めたとき, キーみぞの長さをl/b = 3.0の有限長としていたが,図 9からわかるようにl/b = 3.0のときはまだキーみぞの長 さlによる影響を少しうけている。その値を表8より求 めると3.57/3.52 = 1.0142となり約1.42%となる。

そこで,先に求めた図7の β -r/D曲線 a_{60} の修正を試 み,図中に破線で示した。この修正曲線と寺田・細野の 実験とを比べると妥当な応力集中率を示していると思わ れる。

4. 結 言

機械構造用炭素鋼鋼材 S45C を素材として使用し, JIS B1301に基づき,丸軸の直径D=14.0mm,キーみぞ の幅 b=5.0mm,深さt=3.0mm,長さl=15.0mmを一定と し,キーみぞ底の隅角部の曲率半径rを5種類変化させ て,曲率半径 r の変化による応力集中率を求め緩和曲線 を示した。また,キーみぞの横断面の寸法比を異にする 他の研究結果と対比し,さらに規格による相違を示した。

つぎに、幅b、深さt、みぞ底隅角部の曲率半径r= 0.16 mmを一定とし、キーみぞの長さlを8種類変化させ て応力集中率 $\beta_{\rm B}$ を求め、同じく長さを5種類変化させて $\beta_{\rm A}$ も求め、キーみぞの長さに対する応力集中率への影響 $\delta l/b(l/D)$ の尺度で表わし明らかにした。そして、こ のことからl/bが3.37以上の場合には無限長さのキーみ ぞに発生する応力集中と同じ値になることを示した。

文 献

- (1) H. Quest, Ing. Archiv, 4(1933), 517.
- (2) M. M. Leven, Proc. SESA, 7-2(1949), 145.
- (3) M. Nisida, Proc. Intern. Symp. Photoelasticity, (1963), Pergamon Press, Oxford, 109.
- (4) H. Okubo, Quart. J. Mech. Appl. Math., (1950), 162.
- (5) 寺田・細野, 機械学会論文集, 29(1963-1), 92.
- (6) JISハンドブック,機械要素,(1977)日本規格協会,463.
- (7) 大久保 肇, 銅めっき応力測定法,(昭41)朝倉書店.