*常時微動測定とその解析に関する若干の考察"

中 村 満喜男

^{Some} Investigations for Measurement and Analysis

of Micro Tremor"

Makio NAKAMURA

常時微動を測定・解析することは地盤・構造物等の動特性を明らかにし,強震時における災害の可 能性を把握する上で非常に有効である。本論文では測定された常時微動の波動の性質を振巾に関する 確率密度分布,周期に関するフーリエ振巾スペクトルとゼロクロッシング法による周期一頻度スペク トルとの比較検討を行い波動解析に関する若干の考察を行ったものである。測定はナゴヤ球場で行わ れたものである。

1. まえがき

地震時における構造物及び地盤の動特性を把握する有 力な手段として,常時微動による地盤の評価と構造物の 固有周期の評価がある。常時微動による地盤種別の区分 が人口の密集した各都市において検討されている。又構 造物の固有周期が起振機による強制振動実験によらなく ても常時微動より明らかとなれば非常に簡便な方法とし て常地微動測定が評価されるのである。このような意味 で当研究室では常時微動測定装置を揃え実測を開始した。 本論文は測定された波動データの解析について考察を加 えたものである。波動データは現地でデータレコーダに 収録され,愛知工業大学電子計算機やンターで処理され る。このように実測から電子計算機処理にいたる一貫し たシステムを完成することが大きな目的である。 主な検討項目は

- I) 微動の振巾に関する確率密度分布
- Ⅱ)フーリエ解析によるフーリエスペクトルとゼロク ロッシング法による周期一頻度スペクトルとの比較
- Ⅲ)フーリエスペクトル・パワースペクトルを求める 際の平滑化に係わるラグウインドウのバンド巾に 関するパラメトリックな検討

筆者はたまたまナゴヤ球場の常時微動と新幹線通過時の 微動の測定・解析の機会を得ることができ上記の検討を 行った。測定は次の3項目に分けて行われた。第1はス タンドを構成する3つの構造物ブロックの常時微動測定 であり,第2はグラウンドの常時微動測定であり,第3 は新幹線通過時における各構造物ブロックの微動測定で ある。

解析の結果より,第1に振巾に関する確率密度分布は振 巾ゼロを対称軸とする正規分布とみなしてさしつかえな いことである。第2に周期頻度スペクトルとフーリエス ペクトルを詳細に比較すると,ピークの現れる振動数は 両者で概ね一致するが,ピーク値の大小関係は全く異る。 卓越周期を求める目的の解析ならば両者の差はない。第 3にスペクトルの平滑化に関するラグウインドウのバン ド巾トは 0.6が適切であることが明らかとなった。

2. 微動の解析について

微動の解析には2つの流れがある。アナログ量として 最初から最後の結果まで得るものと,ディジタル変換を 行った後電子計算機による解析を行い最後にX-Yプロ ッターで図形表示するものである。本論文は後者の方法 について検討を加えたものである。

解析は測定データをA-D変換器に通し,ディジタル量 に変換し磁気テープに出力する。この時データは0.01秒 きざみで1つの波形に対し3072個(およそ30秒間)が出 力される。これらのデータを電子計算機(FACOM 2 30-25)で処理した。その流れが図1に示されている。 ソースプログラムの内WAVEIでデータの順づけを行 い,WAVE IIで零線補正とスケーリングと波動の最大 振巾を求める。WAVE IIで規準化された波動に対し, 振巾に関する確率密度分布,ゼロクロッシング法による 周期一頻度スペクトル,フーリエ変換・逆変換とラグウ インドウを使って平滑化されたフーリエスペクトルを計 算している。解析方法として特に新しい所があるわけで はないが,簡単にここで示しておく。

(文献1による)

図1 フローチャート

I) 確率密度分布

微動の振巾に関する確率密度分布を検討する意味は微 動のランダムさの程度を知ることである。一般にランダ ムな波の確率密度分布は正規分布となることが知られて いるから,測定された微動の分布が正規分布からどの程 度一致するかは,常時微動がエルゴーディックでランダ ムである仮定とどの程度一致するかを明らかにする手段 となる。

今微動の規準化された標本値を x_j ($j = 0, 1, \dots, N-1$) とする。振巾を $+1 \sim -1$ の 0.1ごとの21のクラスに分ける為にその区分値をYjとすると、Yj $\geq \lambda_m > Y_{j-1}$ の標本の個数を数えればよい。この数をPjとすると、Pj/NがYjの振巾に対する確率密度である。Yj値に対してこの値をプロットすると確率密度分布が得られる。 II) ゼロクロッシング法による周期—頻度スペクトル

金井はこの方法を使って常時微動の解析を行い耐震工 学上有益な結果を得ている。古典的ではあるが常時微動 の解析法として現在でも有効に利用されている。この方 法は零軸を横切る波動の各時間間隔を測りその2倍があ らかじめ決めておいた周期のクラスのどの部分に入るか を決めクラスごとにその数を数えておく方法である。

 $T_{j} \ge 2 \cdot (t_{k-1}) > T_{j-1}$ の数を数えればよい。 但し T_{j} は各クラスを区分する値であり t_{k} は微動が零線を 横切る k 番目の時刻である。各クラスの代表値は $\widetilde{T_{j}}=$

(Tj+Tj-1)/2.0で表わされ, カウントされた数をPjと するとPj=Pj/ $\sum_{k} P_k$ が相対的な頻度となり,単位はパセントで表わされる。 $\widetilde{T_j}$ に対しPjをプロットしたものが周期一頻度スペクトルとなる。この方法は零軸を横切らな い,周期が短くて振巾の小さいさざ波のような波形の情 報を全く与えない。すなわち一種のlow pass フィルタ -であることが注意されるべきである。

Ⅲ) フーリエ解析による振巾スペクトルとパワースペク トル

微動データが離散的なデイジタル量 x_i (j = 0, 1,

・・・N-1)で表わされるから、そのフーリエ変換・
逆変換は

$$\begin{split} C_{k} &= 1/N \cdot \sum_{m=0}^{N-1} x_{m} \cdot \exp((-i \cdot 2\pi k \cdot m/N) \\ x_{m} &= \sum_{k=0}^{N-1} C_{k} \cdot \exp((i \cdot 2\pi k \cdot m/N) \\ k, m &= 0, 1, 2, \cdots \cdot N - 1 \end{split}$$

k に対してすなわち振動数 $f_k = k \cdot \Delta f = k \cdot 1/T$ (T: 継続時間) に対して | C_k | をプロットしたものがフーリ エスペクトルである。

パワースペクトルは次式の右辺の項で表わされる。

$$\sum_{m=0}^{N-1} x_m^2 \cdot 4t = T \cdot |C_o|^2 + 2 \sum_{k=1}^{N/2-1} (T \cdot |C_k|^2)$$

+ T \cdot |C_{N/2}|^2(2)

 f_k に対して上式の右辺の各項をプロットしたものがパワ ースペクトルである。

Ⅳ) ラグウインドウ(平滑化について)

本論文ではParzen のラグウインドウが使われる。そ れは次式である。

原波形の自己相関関数. $R(\tau)$ より平滑化された自己相関 関数 $\overline{R}(\tau)$ は次式となる

パワースペクトル $\overline{G}(\omega)$ は $\overline{R}(\tau)$ のフーリエ変換であるから

 $\overline{\mathbf{G}}(\omega) = \int_{-\infty}^{\infty} \overline{\mathbf{R}}(\tau) \cdot \exp((-\mathbf{i} \cdot \omega \tau) \, \mathrm{d}\tau \, \cdots \cdots \cdots (5)$

 \overline{G} (ω) よりフーリエ振巾スペクトルは $|\overline{F}(f)| =$ $\{T-\overline{G}(f)\}^{\frac{1}{2}}$ の関係より容易に得られる。上式の関係より平滑化された $\overline{G}(f)$ と原波型のG(f)の間には

$$\overline{G}$$
 (f) = $\int_{-\infty}^{\infty} G$ (s) $\cdot W$ (f-s) ds(6)

の関係があり $\hat{G}(f)$ はG(f) の移動平均になっていることがわかる。W(f) はParzenのスペクトルウインドウであり次式で表わされる。

W(f) =
$$3/4 \cdot u \cdot \left\{ \sin (\pi u f/2) / (\pi u f/2) \right\}^4$$
(7)

バンド巾 b (cps) = 280/151uの数値については後で検 討される。b が大きくなる程パワースペクトルにおける 平滑化が進むことになる。

図2 Parzenのスペクトルウィンドウ(文献1)

3. 測定の概要

3.1 測定場所と周辺の地盤条件

名古屋市の地盤は東から西へ向ってゆるやかな傾斜を 持った地層構造からなり,西へ行くに従ってしだいに沖 積層が厚くなる。東側は熱田層・八事層・唐山層の洪積 台地からなる良質の地盤を形成している。

ナゴャ球場は上記熱田層より少し西にはずれた位置にあ る。近傍の案内図を図3に示す。東海道新幹線・東海道 本線・中央本線・東臨港線・名古屋鉄道が近くを走って いる。特に東海道新幹線はナゴャ球場外野席の近い所では 30m くらいの所を走っている。図3の1~7の地点にお

図3 ナゴヤ球場近傍地図(名古屋地盤図より)

ける柱状図が図4に示されている。これよりナゴャ球場の地盤はN値0~9の沖積層が10m厚で存在し、その下にN値10以上の熱田層が存在することがわかる。

図4 柱 状 図(名古屋地盤図より)

3.2 測定器具と測定システム

測定に使用された計器は次の通りである。

記録:カセットデータレコーダ(TEAC, R-81) モニター:オシロスコープ(LEADER LBO-310A)

増巾器:アンプ(TA-406 保坂製)

センサー:水平ピック 4台 (MTKH-1C保坂製)鉛直ピック 1台 (MTKV-1C保坂製)

上記の計器を図5の様に配線し,PIC A, B, C, Dをそれ ぞれの測定位置に置き同時測定を行った。

図5 測定システム

3.3 常時微動測定

ナゴヤ球場は近くを国鉄・私鉄が通っている為深夜で も貨車等の交通が多いが測定はその合間をぬって行われ た。測定日時は昭和52年

7月25日 (23時) ~7月26日 (4時)

7月26日(23時)~7月27日(4時)

である。測定はスタンドの測定,それからグラウンドの 測定の順で行われた。スタンドは構造的に3つのブロッ クA・B・Cに分けることが出来る。測定はAブロック A-B連成,Bブロック,Cブロックの順に行われ,図 6にそれぞれの場合のピックの位置と番号が示されてい る。ピックは地盤と1階床と各階床に置かれ,地盤と構 造物の微動の違いを明らかにすると共に構造物に固有な 微動を見つける目的で配置された。

グラウンドの測定は中央に3 成分(X・Y 方向,鉛直) のピックを固定し,番号3・4 のピックをX−X 軸とY −Y 軸上に置いて測定を行った。図7 にそれが示されて いる。

3. 4 新幹線通過時における各ブロックの微動測定

新幹線のみの影響を知る為,他の交通量の比較的少い と思われる下記の時間帯に測定を行った。

7月26日 (22時~23時)

7月28日 (21時~23時)

最も激しく揺れると思われるおよそ40~50秒を記録した。 スタンドの各ブロックにおけるピックの位置と番号が図 6の⊗印で示されている。

4. 測定・解析結果について

解析に先だちバンド巾bの違いによってフーリエスペ クトルがどの程度平滑化されるかについて検討を行った。 バンド巾を大きくとりすぎると主要なピークを見落す恐 れがあり、バンド巾が小さすぎるとどれが主要ピークで あるのか見失う恐れがある。図8に4種類のバンド巾に 対する平滑化されたフーリエスペクトルが示されている バンド巾が 1.0と 0.8では1つのピークがバンド巾 0.4 と 0.5では2つのピークに分かれている。この程度のピ ークが2つに分解されて見えないのでは実用上困るため 常時微動の解析ではバンド巾は 0.6程度が適切であるこ とがわかった。

各ブロックのうち代表的なA ブロックのスパン方向と桁 行方向について,原波形・確率密度分布・周期一頻度ス ペクトル・フーリエスペクトルが図9に示される。図中 の番号は図6のピック位置と対応している。 グラウンドの測定結果のうちX - X方向について得られ たものを図10に示してある。図中12-3,12-4 はX - X測線上における同時測定によるピック番号3・4の結 果であり,14-3,14-4 はY - Y測線上の同時測定に よる結果である。

新幹線通過によるC ブロックの結果が図11に示されている。

図8 バンド巾の違いによるフーリエスペクトル

5. 結果の考察

5.1 確率密度分布について

図9~11を比較してみると各ブロックと地盤の常時微動の確率密度分布はほとんど変わらない。図9のスパン 方向のピック番号1・3は鋭くとがっているがこれは波 形の1~2秒の所に非常に大きな振巾が記録されたため の現象と考えられ,常時微動では確率密度分布は振巾零 を通る鉛直軸に対称となっており,概ね正規分布と見て 差しつかえないようである。

新幹線通過時のC ブロックの確率密度分布は常時微動の それと非常に良く似ている。原波形の違いは顕著である から、この違いは確率密度分布以外の要因すなわち周期 特性に大きく依存する事が明らかである。

5.2 周期一頻度スペクトルとフーリエスペクトルの 比較

横軸が周期ー頻度スペクトルでは周期,フーリエスペ クトルでは振動数(cps)である為に比較しにくいが,A ブロックとグラウンドの常時微動に対し詳細に検討する と,ピークの位置は両者共に同じように現われているが ピーク値のピック番号に関する大小関係は,周期一頻度 スペクトルが振巾に関する情報を含んでいない為,対応 は全くない。しかし卓越周期のような主要ピークはどち らの方法によっても同じことが明らかである。図11の新 幹線通過時のフーリエスペクトルは周期的に高い振動数

図10 グラウンドー原波形・確率密度分布・周期一頻度 スペクトル・フーリエスペクトルー

図11 新幹線一原波形・確率密度分布・周期一頻度スペ クトル・フーリエスペクトル

表1 常時微動および新幹線振動の最大振巾

-									
0105 NO	×.	101	NV X	MAXIMUM AMPLITUDE (MICRON)					
CASE NO.	14	MI-1M	111	1 ch.	2 ch.	3 ch,	4 ch.	5 ch.	
1	A	0		0.6665	0.3668	0.7991	0.5136		
2	A	0		0.3918	0.3677	0.4727	0.4445		
3	A-B	0		0.4536	0.3944	0.4522	0.4270		
4	A-B	0		0.3465	0.4156	0.5382	0.3038		
5	AB	0		0.3125	0.2817	0.5414	0.37.74		
6	А-В	0		0.4231	0.3785	0.5161	0.3663		
7	в	0		0.6537	0.6004	0.4572			
8	в	0			0.3032	0.2691			
9-1-A	С		0	3.380	1.932	2,850			
9-1-B	С		0	9.034	4.854	8.093			
9 A	С	0		0.8253	0.5273	0.6506			
9 B	С	0		1.114	0.4795	0.6286			
10	С	0		0.4038	0.4696	0.6354			
11	Gr	0		0.4203	0.4051	0.3994	0.3742	0.1337	
12	Gr	0		0.5503	0.5432	0.4070	0.4419	0.44 5 3	
13	Gr	0		0.5331	0.5546	0.6256	0.4824	0.6346	
14	Gr	0		0.4084	0.4248	0.3575	0.3553	0.3524	
14 - A	Gr		0	1.906	1.542	2.152	1.274	1.863	
14 - B	Gr		0	2.196	1.942	1.967	1.860	2.924	
15	А		0	1.437	1.653				
16 – A	А		0	1.428	1.387				
16 – B	Α		0	0.7241	1.891				
16 – C	Α		0	0.7600	0.7440				
17 - A	в		0	1.839	4.285				
17 – B	в		0	1.645	3.742				
17 – C	в		0	1.480	3.032				
18 - A	в		0	0.9426	2.991			[[
18 - B	в		0	1144	1 1 5 2				

でピークが現われているが、周期一頻度スペクトルでは このようなピークは確認できない。原波形が短周期成分 を多く含んでいることは明瞭であるが、周期一頻度スペ クトルは low passフィルター(すなわちhigh cutフィ ルター)である為に短周期成分の情報が欠落している。 すなわちこの種の微動の解析ではフーリスペクトルの方 が適切であると結論される。

5.3 各ブロックの常時微動に関する考察

紙面の都合上省かれた他のブロックの結果と図9より, 第1にピックの位置の違いにもかかわらずほとんど同位 相で振動していることが原波形を見ると明らかであり, フーリエスペクトルの形もほとんど同じである。すなわ ち各ブロック全体がスウェイ或いはロッキング振動して いる事がわかる。地盤上の微動のフーリエスペクトルが 構造物の他の点の微動のフーリエスペクトルとほとんど 同じ傾向を示しているという事は,構造物に固有な振動 特性を示す情報がこれらの解析からは得られない事を示 している。この事は低層で比較的剛な構造物の測定結果 としてしばしば経験する所である。

第2 にいずれのブロックでも主要な2 つのピークがあり 1.5cps (0.67秒) と 2.6cps (0.38秒) で生じている。 スパン方向では 2.6cpsの方が大きなピーク値を示すが, 桁行方向では 1.5cps の方が大きなピーク値を示す傾向 がある。 第3 に最大振巾については表1 に示されているが,注意 すべきは地盤上の最大振巾は1 階スラブ上の最大振巾よ りわずかに大きい事である。又桁行方向では1 階スラブ と2.3階スラブの振巾比はほとんど変わらないが,ス パン方向ではこの比が1.2~2.0となりロッキング振動 の影響が強い事を示している。

5. 4 グラウンドの常時微動に関する考察

図10より常時微動はX -X 方向とY -Y 方向で周期特 性について明瞭な違いは見られず方向性はない。いずれ も 1.5~ 3.0cps (0.67~0.33秒)に卓越周期を持って いる。鉛直成分は 1.8cps (0.56秒)と 2.8cps (0.36 秒)の2つの振動数でピークを示している。最大振巾は 水平・鉛直共およそ 0.4~ 0.5ミクロンである。波形よ り注意すべきは同時測定であっても測点の距離が 100m 近く離れていると波形が全く異なっていることである。 しかし前に記している通り周期特性は変わらないから, 地盤の構成がこの 100m で変化しているとは考えられな い。

 5 新幹線通過時における各ブロックの微動に関す る考察

図11より微動が 1.7, 3.3, 5.0, 6.6, 8.0, 9.6, 11.5, 14.6cps で顕著なピークを持つ比較的高周波成分 の多い波動であることがわかる。A・B ブロックにおけ る結果は省略されているが周期特性はC ブロックと極め て良く似ている。最大振巾は表1 からわかるように, C ブロック1 階スラブで 4.8ミクロン, B ブロック1 階ス ラブで 1.8ミクロン, A ブロック1 階スラブで 1.4ミク ロンと新幹線からの距離が大きくなるに従って振巾は減 衰している。

6. 結 び

本研究は建築工学科創設以来機会あるごとに整備して きた微動測定装置による測定と本学電子計算機センター におけるデータ処理を一貫して行うシステムを完成する 事を目ざして行われ,概ねその目的は達成されたと思わ れる。

なおプログラムの内WAVEⅢの個々のサブルーチンは 文献1によった。

最後に測定の機会を与えて下さったナゴャ球場関係者, 測定と図表のとりまとめに協力いただいた建築学科卒論 生石賀・牛居・出口の3君に深い感謝の意を表わすしだ いである。

参考文献

1)	大	崎	順	Į	彦	「地	震動のス	ペク	トル解	析入
						門」	鹿島出版	i会		
2)	日	本 建	1 築	学	会	「名	古屋地盤	×.	コロ	ナ社
3)	横	尾・:	坂本	。劣	賀	「圳	震時にお	ゔける	名古屋	地盤

の振動特性に関する調査」名 古屋市防災会議資料

4)小林芳正「建設における地盤振動の影響と防止」 鹿島出版会