新規骨格を利用した熱活性化遅延蛍光材料の開発

[研究代表者] 森 竜雄(工学部電気学科) [共同研究者] 髙鳥正重(㈱三若純薬研究所)

研究成果の概要

シミュレーション上にて、新規 TADF 材料の化学構造を設計し、Hybrid 汎関数の B3LYP を使用し最適化を行った。 最適化を行った後、エネルギー計算を行い、エネルギー準位を求めた。個々のエネルギー準位の計算については GGA 汎関数の PBE と BLYP を使用した。置換基である R₁ と R₂ をつけ、その特性を調査した。比較対象として実際に TADF 材料使用される 4CzIPN についてもシミュレーションにて計算をした。

基本骨格に置換基 R₁、R₂の配置をイメージして計算を行った。基本骨格は開示できない。大文字の ABCD は R₁の 配置、小文字の abcd は R₂の配置を意味する。骨格の対称性と回転性は実際の材料と一致している。4CzIPN も同様 に計算し、R₁、R₂を全て配置したデータ共に比較の為加えた。置換基 R₁の個数が 2 個の場合、配置の組合せが 3 つ あるので、それぞれに色と配置した位置を示した。置換基 R₁の個数が増えると HOMO と LUMO の間のギャップが 徐々に小さくなっているのが分かる。また、4CzIPN のデータを見ると HOMO と LUMO の差であるギャップが小さ いことが分かる。故に、新規 TADF 材料の開発では置換基 R₁の個数はギャップの一番小さい 4 個が適すると考えら れる。置換基 R₁の個数が 0 個から 1 個で大きく siglet と triplet のギャップが変化することが分かる。また、TADF 材 料ではこのギャップが小さくある必要がある。その為、ギャップが小さい 4 個のデータが適する。実際に 4CzIPN に おいても、このギャップが小さい。これにより、TADF 材料の開発において置換基 R₁の個数は 4 個が適することが分 かった。本材料は 4CzIPN と同程度未満の Δ E_{st}=0.04eV となる可能性があり、TADF 材料として期待ができることを 示唆した。

研究分野:電気電子材料

キーワード: 有機 EL、熱活性化遅延蛍光、シミュレーション

1. 研究開始当初の背景

我々は TADF(熱活性化遅延蛍光)素子について電導機構 と発光材料開発の研究をした。TADF 分子は一重項状態 (singlet)と三重項状態(triplet)とのエネルギーギャップ(Δ Est)が小さくなるように設計される。これにより、励起状 態エネルギー(三重項)から一重項へのアップコンバージ ョンを可能にし、一重項励起エネルギーから遅延蛍光とし て高効率な発光を実現することができる。TADF 有機 EL として、よく使用されている発光材料である 4CzIPN(カル バゾリルジシアノベンゼン誘導体)があるが、シミュレー ションを利用して新規 TADF 材料の設計を行う。

2. 研究の目的

4CzIPN の中心骨格はベンゼンであり、これに電子供与 性のカルバゾール基、電子吸引性のシアノ基が付加されて いる。この材料を開発した九州大学グループでは、カルバ ゾール基の配置や個数などについて調査されている。我々 は中心骨格に共同研究者の三若純薬研究所が有する材料 を選択して、その材料の TADF 化が可能であるかを調査し た。電子供与性や電子吸引性の置換基は数多く報告されて おり、我々はその一部を利用して分子計算を行った。

3.研究の方法

(1) 計算機シミュレーション

我々は Dassault Systems の Materials Studio を利用した。 まず最初に 4CzIPN を標準試料として、Hybrid 汎関数の B3LYP を使用し最適化を行った。最適化を行った後、エネ ルギー計算を行い、エネルギー準位を求めた。個々のエネ ルギー準位の計算については GGA 汎関数の PBE と BLYP を使用した。このデータを利用して、目標としている TADF 材料の計算を行った。利用した PC は AMD Ryzen7 3700X8, 16GB である。

4. 研究成果

シミュレーションはまず中心骨格の分子構造を調査し、 HOMO,LUMO などの値を評価した。その後、置換基を付 加した新規材料について、計算を行った。

図1 新規材料の置換基付与イメージ

図1に新規材料の置換基付与イメージを示す。基本骨格 や置換基については守秘義務により抽象化してある。今回 は置換基 R₁(A~D),置換基 R₂(a~d)のうち、置換基 R₁の個 数と配置について調査した。

図 2 置換基 R₁の配置・有無による HOMO, LUMO への 影響

図2に計算により得られた最高占有分子軌道(HOMO)と 最低被占分子軌道(LUMO)への影響をまとめた。分子対称 性から置換基 R_1 の1個、3個、4個の場合は一種類計算す れば良く、2個の場合には3種類の配置となる。しかしな がら、ほとんど差がなかった。 R_1 が1個置換されると HOMO は少し値が小さくなるが、それ以上は個数に依存 しない。一方、LUMO は個数に依存して大きくなった。ま た、4個の R_1 を置換した試料に R_2 を4個置換した試料が 最も大きな変化を示した。この場合には、4CzIPN なみの 分子構造が期待できる。

図3 置換基 R1の配置・有無によるΔEstへの影響

図3は置換基 R_1 の配置・有無による ΔE_{ST} への影響を示 す。無置換の試料に比べ、置換基 R_1 を1個以上付けると 大きく低下する。4個の R_1 を置換した試料に R_2 を4個置 換した試料がさらに小さくなった。計算上は4CzIPNより も低い ΔE_{ST} が実現できることを示唆した。

以上より、新規材料の TADF 材料としての基本的な性能 として、4CzIPN 並の性能が期待できることがシミュレー ションによりわかった。今後は実際に材料を合成すること を検討していきたいと思う。

5. 本研究に関する発表

特許申請時まで発表は禁止につき、関連した発表はない。