繰り返し荷重を受ける鋼トラス橋のブレース材の 終局挙動に関する実験および再現解析

Experiment and analysis on ultimate behavior of bracing members of steel truss bridge in cyclic loading

嶋口儀之[†],山田忠信*,野中哲也**,馬越一也***,鈴木森晶**** Yoshiyuki Shimaguchi, Tadanobu Yamada, Tetsuya Nonaka, Kazuya Magoshi, Moriaki Suzuki

†博(工),愛知工業大学,耐震実験センター(〒470-0356 愛知県豊田市八草町八千草 1247)

*株式会社 IHI インフラシステム(〒509-0977 大阪府堺市堺区大浜西町3番地)

**博(工),名古屋工業大学大学院教授,社会工学専攻(〒466-8555 名古屋市昭和区御器所町)

***博(工),株式会社地震工学研究開発センター(〒810-0003 福岡県福岡市中央区春吉 3-21-19)

****博(工),愛知工業大学教授,工学部土木工学科(〒470-0356 愛知県豊田市八草町八千草 1247)

In this paper, we investigated the ultimate behavior of the end sway bracing in a steel truss bridge. It is revealed that the buckling strength and deformation of the bracing member is very similar to those of the compressed fixed support column by cyclic loading experiments using about half-size specimens of the panel structure of an actual truss bridge. It was also confirmed that the load-displacement hysteresis curve of the panel specimen was a spindle shaped loop. Furthermore, in order to perform a rational seismic retrofit design for the truss bridge, we proposed an analysis model using fiber elements and confirmed that the behavior of the experiment could be reproduced.

Key Words: steel truss bridge, bracing members, cyclic loading, ultimate behavior キーワード: 鋼トラス橋, ブレース材, 繰り返し載荷, 終局挙動

1. はじめに

兵庫県南部地震の発生以降,道路橋示方書¹⁾では耐震 設計において供用期間中に想定される最大級の地震であ るレベル2タイプ2地震動(以下,レベル2地震動)が追 加された.また,2018年制定の鋼・合成構造標準示方書 [耐震設計編]²⁾(以下,学会示方書)においては,最新の 研究成果を基にした耐震性能照査手法が示されている. 既設のトラス橋のうち,兵庫県南部地震以前に設計され たものについては、レベル2地震動に対する耐震照査を 満足することができず,橋軸直角方向の地震動により, 対傾構および横構,特に,支点上の対傾構が損傷するケ ースが多くみられる.そのため耐震補強が必要になる.

トラス橋の支点上の対傾構(以下, ブレース材)は, 主荷 重を受け持つと同時に, 地震時の慣性力などの横荷重に 抵抗する部材として設計される. ブレース材は細長比が 大きく, 限界状態に対して軸圧縮力が支配的であり, 部 材の最大耐力到達後, 座屈により急激な耐力低下が生じ る.そのため、主荷重作用下において不安定になり、構造の安全性を確保できない可能性があり、学会示方書においては、ブレース材の損傷は許容されていない.耐震補強としては、部材の当て板補強、あるいは部材を取り換える方法がとられているが、既設橋の部材を無損傷に抑えようとした場合、大規模な補強工事が必要となる.しかし、構造の安全性が確保できることが前提に、ブレース材の一部の塑性化を許容し、最大耐力までを考慮した設計が可能であれば、合理的な補強設計が期待できる.

また、現行の耐震性能照査手法においてトラス橋のブ レース材は、トラス要素でモデル化し、動的解析により 得られた応答値に対して、耐力の照査を行う.この際、 ブレース材は面内座屈に関する有効座屈長が骨組長の 0.8~1.0 倍で、格点部でピン結合された部材として、道 路橋示方書³⁰の耐荷力曲線に基づき設計される.しかし ながら、実際のブレース材は格点部でガセットプレート により接合されており、境界条件は剛結に近い形で座屈 耐力の照査を行うことが合理的と考えられる.松村ら⁴⁰ は、ガセットプレートを考慮した圧縮部材の終局強度に 関して FEM 解析により検討し、部材の両端が固定支持 された圧縮柱とみなした場合と同様に、有効座屈長が

[†] 連絡著者 / Corresponding author

E-mail: y_shimaguchi@aitech.ac.jp

0.5L (L:部材長) となることを示し、より合理的な設計手法を提案している.

ブレース材の座屈および終局挙動に関する既往の研究 をみると、 宇佐美ら 5,6は、 格点部がガセットにより結合 された平面トラス構造に対して,水平繰返し荷重載荷実 験及び解析を行い、トラスパネルの破壊挙動および座屈 拘束ブレース (BRB) の効果を検証している. 建築分野 においては、柴田・若林ら^{7,8}により、全体座屈を伴うブ レース材の時刻歴応答解析に使用するための、座屈履歴 モデルが提案されている. その後, 竹内ら 9,10)は, 繰返し 軸載荷実験と有限要素法解析により、履歴モデルの見直 しを行い、ブレース材端部の結合条件が異なる場合につ いても対応が可能な修正柴田・若林モデルの開発および 破断発生の推定手法を提案している. 橋梁分野での解析 的な検討としては、馬越ら 11,12)は、2 次部材のポストピ ーク挙動および部材の破断を考慮した地震応答解析を行 い、2 次部材の損傷が構造全体の安全性に与える影響に ついて確認している.

以上のように、ブレース材の終局挙動の研究が進めら れてきたが、ブレース材を含むパネルとしての実験は少 なく、比較的小規模なものとなっている.また、実際の トラス橋のブレース材パネル構造を正確に反映した供試 体での実験は行われておらず、ブレース材座屈後の実挙 動が十分に確認できているとはいえない.トラス橋の合 理的な耐震照査および補強設計を行うためには、ブレー ス材単体の座屈挙動だけでなく、パネル構造としての変 形性能および終局挙動について実験により把握すること が必要である.

そこで本研究では、一般的な上路式トラス橋の支点上 対傾構を含む1構面を対象に、実橋梁の構造を忠実に再 現した供試体を用いて、漸増変位繰り返し載荷実験を行 い、繰り返し荷重下におけるブレース材パネル構造の終 局挙動を明らかにする.また、実験の挙動が再現可能な 解析モデルを提案する.

2. 対象橋梁および供試体の設計

2.1 対象橋梁の概要

本研究で対象とする橋梁は一般的な鋼トラス橋であり、 橋梁形式は3径間連続上路式トラス橋である.上記のト ラス橋について、耐震性能照査を行った地震応答解析の 一例を図-1に示す.図は、橋軸直角方向の地震力を作 用させたケースであるが、端支点上のブレース材が塑性 化していることがわかる.そのため今回は、耐震設計上 重要な、支点上の対傾構を含む1構面を研究対象とする.

対象橋梁の対傾構のブレース材は SS400 相当の H 形 鋼が使用されており,部材両端がピンとして計算した場 合の細長比は 83.6 である.支点上対傾構のブレース材の 細長比は 80 程度のものが多く,対象橋梁についても一般 的なパラメータを有する.接合部の高力ボルトは

図-1 対象橋梁の地震応答解析例

表-1 実橋梁の設計耐力計算

境界条件				両端ピン	両端固定
フランジ		幅	mm	220	
		板厚	mm	10	
ウェブ		高さ	mm	270	
		板厚	mm	9	
母材断面		Ag	mm ²	6830	
母材純断面		An	mm ²	5850	
断面二次モーメント		Ι	mm^4	1.77×10 ⁷	
断面二次半径		r	mm	51	
降伏応力		σ _y	N/mm ²	235	
ヤング係数		Е	N/mm ²	2.00×10 ⁵	
部材長		L	mm	4260	
有効座屈長		l	mm	3408	1704
細長比		$\lambda = l/r$	-	83.6	41.8
細長比パラメータ		$\overline{\lambda}$	-	0.729	0.365
		$ ho_{crg}$	-	0.711	0.910
座屈耐力		$P_{crg}\!\!=\!\!A_g\!\!\times\!\!\sigma_y\!\!\times\!\!\rho_{crg}$	kN	1142	1461
降伏耐力	接合部	$P_n = An \times \sigma_y$	kN	1375	
	一般部	$P_g=Ag \times \sigma_y$	kN	1605	
ボルト			呼び径	M22	
ボルト孔径			mm	24.5	
ボルト本数		n	-	12	
設計軸力		Ν	kN	204.5	
すべり係数		μ	-	0.40	
1本当りすべり耐力		V _{styd}	kN	81.8	
摩擦面		m	-	2	
すべり耐力		$P_s = n \times m \times V_{styd}$	kN	1963	

M22(F10T)である. ブレース材の断面諸量および設計耐 カの計算結果を表-1 に示す. 軸圧縮力に対する座屈耐 力は,面内座屈に対して,両端ピンとした場合および両 端固定とした場合について算出する. 有効座屈長は道路 橋示方書³⁾に規定される下限値であり,部材長(骨組長)L の 0.8 倍を基準とする.引張力に対する降伏耐力は,接 合部のボルト孔位置の純断面部および一般部について示 す.接合部は,2 面摩擦接合となっており,ボルト本数は 12 本である. すべり係数は道路橋示方書の基準に従い, 0.4 としてすべり耐力を算出した.

計算結果より,ブレース材接合部の境界条件を両端固 定とした場合,両端ピンの場合と比較して座屈耐力が3 割程度大きくなる.また,2面摩擦接合が採用されてお り,接合部のすべり耐力に余裕のある設計となっている.

2.2 供試体の設計

対象橋梁の支点上対傾構を含むトラス構面の実際の構造をできる限り忠実に再現した供試体(以下,パネル供試体)を製作した.実験装置の制約からサイズは約1/2とする.パネル供試体は図-2に示すように、ブレース材,上下の水平材および鉛直材で構成されている.各部材の寸法を図-2~5に示す.接合部は図4に示すように2面接合であり,使用する高力ボルトは実橋梁がM22であるのに対し,供試体は一般的に入手が可能なサイズのM12(F10T)を使用した.縮尺率は0.545であり,各部材および接合部の寸法については、ボルトの縮尺率を基準に相似率に基づき設定した.ブレース材はSS400のH形鋼を使用し、最も縮尺率が近くなるものを選定した.また、上部水平材については、事前解析による検討において塑性化せず、損傷しないと考えられるため、部材高さのみ縮尺を合わせ、十分な剛性を持つ断面とした.

2.3 パネル供試体のブレース材および接合部の耐力

パネル供試体のブレース材の断面諸量および設計耐力 を表-2 に示す.ここでは実験結果との比較のため,部 材の断面寸法は実測値,降伏応力については材料試験か ら得られた値を用いて耐力を算出した.座屈耐力は実橋 表-2 供試体の設計耐力計算

境易	両端ピン	両端固定		
フランジ	幅	mm	100	
////	板厚	mm	8.5	
ウェブ	高さ	mm	133	
9.5.7	板厚	mm	5.6	
母材断面	Ag	mm ²	2445	
母材純断面	A _n	mm ²	1986	
断面二次モーメント	Ι	mm^4	1.42×10 ⁶	
断面二次半径	r	mm	24	
降伏応力	σ _y	N/mm ²	360	
ヤング係数	Е	N/mm ²	2.00×10 ⁵	
部材長	L	mm	2305	
有効座屈長	1	mm	1844	922
細長比	$\lambda = l/r$	-	76.6	38.3
細長比パラメータ	$\overline{\lambda}$	-	1.035	0.517
	ρ_{crg}	-	0.555	0.827
座屈耐力	$P_{crg}\!\!=\!\!A_g\!\!\times\!\!\sigma_y\!\!\times\!\!\rho_{crg}$	kN	488	728
降伏耐力 接合部	$P_n=An \times \sigma_y$	kN	715	
一般部	$P_g=Ag \times \sigma_y$	kN	880	
ボルト		呼び径	M12	
ボルト孔径		mm	13.5	
ボルト本数	n	-	16	
設計軸力	Ν	kN	56.9	
すべり係数	μ	-	0.40	
1本当りすべり耐力	V _{styd}	kN	25.6	
摩擦面	m	-	2	
すべり耐力	$P_s = n \times m \times V_{styd}$	kN	728	

図-6 実験載荷装置および計測概要

-62 - 20

写真-1 実験載荷装置

梁と同様に両端ピンおよび両端固定場合について計算し ている. 接合面のすべり係数は実橋梁と同様に 0.4 を使 用した. 実橋梁はすべり耐力に余裕がある設計であるた め、十分なすべり耐力を確保するため、接合面に錆促進 剤による発錆処理を行っている. 土木学会の指針¹³⁾では、 発錆処理をした場合のすべり係数の推奨値は0.45 とされ ている. また、既往の研究^{14),15}においても、0.45 を上回 る値となることが示されており、十分なすべり耐力が確 保されていると考える.

3. 実験概要

3.1 載荷装置および計測項目

実験に使用した載荷装置とパネル供試体の設置状況を 図-6 および写真-1 に示す.供試体はピン支承によっ て支持されており、上部水平材端部に接続した静的油圧 アクチュエータ(圧縮 4400kN,引張 2100kN)により、水平 繰り返し載荷を行った.

計測項目は図-6 に示すように、格点および水平荷重 載荷高さの変位、部材のひずみ、ブレース材の軸方向の 変形量、ボルト軸力とした.変位の基準点とする上弦材 端部および上側2か所と中央の格点については、面外変 位を確認するため3 方向から糸巻き変位計を設置し、3 次元の座標を測定した.ブレース材の変形量については、 A~D の格点から中央の格点をターゲットに糸巻き変位 計を設置し、格点間の相対変位を計測した.

ボルト軸力の導入については、リラクゼーションによるボルト軸力の低下を考慮し、実際の施工と同様に設計 軸力(56.9kN)の 10%増しで導入した.実験は軸力導入後 24時間経過し、軸力の低下が安定してから実施した.軸 力の計測については、ボルト頭部に2軸ひずみゲージを 設置し、事前にひずみと軸力の関係を校正したボルトを 使用した.

また,載荷中の面外方向への転倒防止のため,上部水 平材の上フランジの両側に面外拘束治具(チルタンク)を 設置し(写真-1参照),面外方向への変位を拘束した.

(a) パネル全体の変形状態 載荷終了後

(c) ブレース材(B)の接合部付近の変形

(b) ブレース材(B)下面の局部座屈

(d) ブレース材(D)の破断

3.2 載荷条件

載荷パターンは、図-7に示すように Δ=3 mmを基準と した漸増変位繰り返し載荷とする.これは、事前解析の 結果をもとに最大耐力までに5サイクル以上繰り返し載 荷できるように Δ=3mm とした.最大耐力後はブレース 材に顕著な局部座屈が生じるまで漸増し、その後は破断 まで同じ変位で繰り返し載荷を行った.載荷変位は上弦 材端部の変位基準点の載荷軸方向に設置した変位計の値 を基に制御し、供試体の R 側を正の方向とした.また、 アクチュエータ制御は変位速度制御で行い、実験開始時 の載荷速度は 0.2mm/sec とし、最大荷重到達後は載荷速 度が実験結果に影響しない範囲で速度を増加させた.ま た、本研究で対象とするトラス橋の端対傾構の死荷重は 小さく、事前解析において鉛直荷重の有無による差がみ られなかったため、水平荷重のみを載荷した.

4 実験結果

4.1 水平荷重一水平変位関係

実験から得られたパネル供試体の水平荷重-水平変位 履歴曲線を図-8 に示す. 図の縦軸はアクチュエータの ロードセルの荷重値,横軸は変位基準点での載荷軸方向 の変位である.また,図中に最大荷重および最大荷重時 の変位を示す.

図-8 パネル供試体の荷重-変位関係

図より、+7Δ載荷時に最大耐力に達し、右下のブレー ス材(D)に部材座屈が生じた.次に-7Δ載荷時に、負側の 耐力ピークに達し、左下ブレース材(B)に座屈が生じた. 座屈の進行に伴い、荷重が低下しているが、±9Δ以降は 荷重の低下が比較的緩やかで、安定した履歴を描いてい る.±11Δ付近で、ブレース材中心に局部座屈が生じ、±13Δ において局部座屈が顕著になったため、以後破断まで同 じ変位で繰り返し載荷をおこなった.±13Δ での繰り返し により、徐々に荷重が低下し、最終的には6回目の-13Δ

写真-2 パネル供試体の損傷状況

載荷時に, 引張側となるブレース材(D)が破断したことで 急激に荷重が低下し, 載荷を終了した.実験で得られた 荷重-変位関係は, 鋼製橋脚の場合にみられるような紡 錘形の履歴ループを描いており, ブレース材単体では非 エネルギー吸収部材であるものの, パネル全体としてみ た場合, 一定のエネルギー吸収能を期待できる可能性が ある.

また,実験から得られた最大荷重は,図-8 で示した ように約 1060kN である.ここで,設計座屈耐力との比 較の目安として,ブレース材にかかる軸力をつり合い式 から求めた場合,約 740kN となる.この値は,表-2 に 示した両端ピンとして求めた設計座屈耐力 488kN の 1.5 倍程度であり,両端固定とした場合の座屈耐力 728kN に より近い値である.

4.2 パネル供試体の損傷状況

写真-2にパネル供試体の損傷状況を示す.写真-2(a)は載荷終了後に水平荷重を除荷した状態のパネル供 試体の損傷状況である.最大耐力到達以降,パネル下側 の左右のブレース材に部材座屈が生じた.部材座屈は下 側のみで,上側のブレースに座屈は生じなかった.ま た,写真-2(a),(c)に示すように,ブレース材両端はピ ン接合ではなく,固定端のような形で変形していること がわかる.また,写真-2(b)に座屈部の拡大写真を示 す.ここに示すように,フランジの下側に面外方向に膨 らむ局部座屈が生じている.この部分の局部座屈はそれ ほど大きく進展せず, 亀裂も発生しなかった.

写真-2(d)にブレース材(D)接合部の破断状況を示す. 接合部付近の曲げ変形により,ブレース材フランジのボルト孔位置から亀裂が発生し,最終サイクルの引張力作 用時に完全に破断した.また,中央の接合部のボルト孔 付近においてもブレース材の伸びおよび亀裂が生じた. ガセットプレートおよび添接板については,目立った損 傷は生じておらず,ボルト孔の変形も見られなかった. また,全ての格点において接合部のすべりは発生してお らず,すべりの痕跡は見られなかった.よって実際の接 合面のすべり耐力は,すべり係数を 0.4 として算出した 設計耐力より大きいと考えられる.

下弦材については目立った損傷は確認できなかったが、 鉛直材は下側のガセットプレート近傍に、触れてわかる 程度のわずかな座屈が生じた.

4.3 部材のひずみー累積変位関係

図-9 に、ブレース材、下弦材および鉛直材のひずみ -累積変位関係の一部を示す. 図の縦軸は、各部材に生 じたひずみを降伏ひずみ ε_yで無次元化した値、横軸は累 積水平変位である.また、図中には最大荷重 P_{max} 到達時 すなわち座屈発生時点での累積変位(278mm)を破線で示 している.各部材のひずみ計測位置を図-9(a)に示す.

図-9(d)~(f)より、ブレース材のひずみについては、最 大荷重到達前の、±6ムにおいて降伏ひずみを超え、部材 端部のひずみは2ε_y程度となっている.その後、最大荷重 に到達し、座屈が発生するとともにひずみが急激に増大 している.図-9(b)より、下部水平材は部材端部から曲げ の作用により、最大荷重到達前に上フランジのひずみが 増加し始め、最大4ε_y程度まで増加した.その後は荷重と ともに低下し、±2ε_y程度で安定している.図-9(c)より、 鉛直材については、水平荷重ピーク時に降伏ひずみをわ ずかに超える程度で、ほぼ弾性的な挙動を示している.

5. 実験の再現解析

5.1 解析モデルの提案

(1) ブレース材のモデル化

実験結果を正確に再現するため、本研究で提案する解 析モデルの概要を図-10に示す.パネル供試体全体の骨 組モデル図についても同図内に示している. 実務での使 用を前提にしているため、できるだけ簡易的なモデルと し、図に示すように、はり要素(ファイバー要素)を用 いたファイバーモデルとした. ブレース材の座屈モード が表現できるように、ガセット部を除くブレース材の要 素分割を8分割とした.なお、ガセット端部から鉛直材 の軸心までの部分は、剛体とした. 材料構成則は、図-11 に示すようなトリリニア型移動硬化則とした. 通常の 耐震設計においては、バイリニアモデルが使用されるが、 本解析では最大荷重以降の大ひずみ領域まで計算するた め、応力を高く評価しないように引張強さに達した後は ひずみ硬化なしとした.ただし、このモデルは繰り返し 載荷の影響が考慮できないため、できれば2曲面モデル のような高精度なモデルを使用することが望ましいと思 われる、断面寸法および材料諸元については表-2の値 とし、引張強さは材料試験結果から457kN/mm²を使用し ている.

なお、前述の実験結果から分かるように、ブレース材 は両端固定の挙動を示しており、パネル全体の変形に伴 いブレース材端部に曲げが生じ、結果としてブレース材 には初期不整が与えられた状態になる.解析モデルにお いてもブレース材の境界条件は固定端としており、パネ ルの変形により実験と同様の挙動を示し、両端固定の座 屈モードとなったことから、初期不整を与える必要がな いと判断した.

また、本研究の対象橋梁は、ブレース材に形鋼が使用 されており、部材座屈が先行するが、ビルドアップした 箱型断面部材(溶接構造)は局部座屈が先行する場合も ある. その場合には、図-10内でファイバー要素とし た部分をシェル要素でモデル化することになる.

(2) 接合部のモデル化

ガセット接合部(図-10内の赤線)については、ブレ ース材と同様にはり要素でモデル化するが、この部分の 発生する軸力によって、接合部の挙動を表現することと した.接合部に発生する軸力が、すべり耐力以上になっ た場合、ボルト接合部のすべりを表現するために、接合 部に微小要素を入れ、図-12に示すような非線形ばねを 設定した.発生軸力がすべり耐力以上になるとすべりが 発生し、軸力と変位の関係がバイリニアの骨格曲線で履 歴ループを描くモデルになっている.さらに、支圧接合 への移行を再現するため、すべりが進展し、変位が事前 に設定した限界すべり量に達した時点で、剛性が急増す るモデルとした.ボルトのせん断破壊の判定は、軸力が ボルトせん断耐力に達したかどうかで行うこととする.

5.2 解析条件

載荷条件は実験と同様に、Δ=3mm を基準とした漸増 変位繰り返し載荷とし、上部水平材端部に強制変位を作 用させた。

接合部のすべり耐力については、実験においてすべり が発生しなかったことから、再現解析でのすべり耐力は 910kN(すべり係数 μ=0.5)に設定した.また、すべりが発 生した場合の挙動を確認するため、すべり耐力が小さい ケースについて同様の解析を行った.すべり挙動が明確

図-14 ブレース材の軸力ー伸縮量関係

に発生するように、すべり耐力を 300kN(μ=0.17)まで低減 させた. 図-12 に示した限界すべり量は、ボルト孔径か ら、1.5mm とした.

解析ソフトは、耐震解析ソフトウェア SeanFEM¹⁰を使用し、弾塑性有限変位解析を行った.

5.3 提案モデルによる再現解析

(1)パネル供試体の荷重-変位関係

解析結果から得られた水平荷重-水平変位履歴曲線を 図-13 に示す.比較のため実験結果をともに示す.図よ り,最大荷重までの履歴については,解析と実験結果は 良い精度で一致しているのがわかる.最大荷重を過ぎた 劣化域においてはやや差異がみられるが,履歴ループの 形状はよく似ており,全体として実験結果をよく再現で きている.また,最終の±39mmの繰り返しのループに おいて,荷重の低下に差がみられるが,実験では最終段 階でブレース材が部材座屈から一部局部座屈(写真-2(b)参照)へ移行したことおよびブレース材端部に亀裂 が生じたことが原因と考えられる.提案モデルは,はり 要素(ファイバー要素)によりモデル化しており,局部 座屈および亀裂までは表現できていないため,実験より

図-15 解析結果のブレース材変形状態

やや荷重が大きくなっている.また、本解析においても、 実験と同様に接合部のすべりは発生しなかった.

(2) ブレース材の荷重-変位関係

実験において座屈が発生したパネル供試体下側のブレ ース材に着目し、再現解析によって得られた、右下のブ レース材の軸力と部材軸方向の伸縮量の関係を図-14 に示す.図より、軸力ー伸縮量関係は、局部座屈を起こ さない中心軸圧縮柱の典型的な履歴ループとなっている. また、圧縮側の最大値は750kNであり、実験と同様に両 端剛結合とみなした場合の設計座屈耐力728kNに近い値 となっている.引張側の最大値は880kNであり、設定し たすべり耐力910kNとほぼ同じになっている.このこと から、実験においても接合部がすべる直前であったと推 察できる.

(3)パネル供試体の変形状態

再現解析終了時のパネル供試体の変形状態を図-15 に示す.図は、写真-2(a)で示した、実験終了後の変形状 態相当する、水平荷重を除荷した状態の変形図(変形表 示倍率:1倍)である.解析結果は下側のブレース材が座 屈しており、座屈形状についても実験の変形状態とよく 一致していることがわかる.

5.4 ボルトすべりが発生した場合の挙動の予想

前述のように実験および再現解析において, 接合部の すべりは発生しなかった. その理由として, 対象とした 橋梁のボルト接合部に2面摩擦接合が採用されたことが 大きいと考えられる. しかし, 橋梁によっては1面摩擦 接合の場合もあるため, 接合部のすべり耐力を低減させ, すべりが発生するケースについて解析を行い, パネルお よびブレース材の荷重-変位関係がどのように変化する か予想することにした.

図-16 にパネル供試体全体の荷重-変位関係, 図-17 にブレース材の軸力と伸縮量の関係を示す. 図は比較の ため, すべりの有無の2ケースの解析結果を重ねて示す. 図-16より, すべりが発生した場合, 最大荷重に到達

する変位が 10mm 程度大きくなっていることがわかる. 最大荷重値についてはすべり無しの場合と比較して同等 の値となっている.また,履歴ループの形状は,最大荷 重の到達変位が大きくなったことで,膨らみの大きな紡 錘型となりエネルギー吸収量が増加する結果となった. また,図-17に示すように,ブレース材の軸力について も最大値はほぼ同じ値となり,接合部のすべりにより伸 縮量が圧縮側にシフトしていることが確認できる.

本解析結果から, 接合部のすべりと支圧接合を繰り返 すことによって, 結果的に荷重-変位曲線だけから判断 した耐震性能はすべらない場合と同等かそれ以上になっ た. しかし, パネルの変形量が大きくなることから, す べりを許容する設計は好ましくないと考えられる. 特に 新設橋梁においては, レベル2地震動においてもすべら ないような接合部の設計をすべきである. ただし, 既設 橋梁については, すべりが発生した後も支圧接合で力を 伝達することが確認できれば, すべりを許容しても構わ ないと考える.

6. 提案モデルによる耐震照査方法への展開

提案モデルによる,パネル供試体の実験再現解析の結 果,荷重-変位関係およびブレース材の座屈形状は実験 結果とよく一致した.ブレース材接合部を剛接合とした 本提案モデルは,ブレース材を含むパネル構面の挙動を 十分に再現できるといえる.

ここで、対象の鋼トラス橋に対して、学会示方書²⁾で 提示されている耐震性能照査手法により、提案モデルを 用いて照査することを考える.本照査法では、構造安全 性および地震後の使用性・修復性について照査を行うこ とになり、対象橋梁の構造安全性については構造全体の 安全性および部材の安全性の両方の照査を行うこととさ れている.照査式で示せば、式(1)のようになる.

$$\gamma_i \frac{S_d}{R_d} \le 1.0 \qquad \cdot \cdot \cdot (1)$$

ここで、 γ_i は構造物係数、 S_d は設計応答値、 R_d は設計限 界値であり、載荷履歴の影響が少ない荷重である。

まず,対象トラス橋に対して,部材の安全性の照査を 式(1)で行う.この場合の設計応答値*S*_dは,構造全体をフ ァイバーモデルでモデル化した全体系解析モデルによる 地震応答解析から得られる,対象部材(ブレース材)に 発生する最大荷重(軸力)である.提案モデル(図-10 参照)は通常のファイバーモデルより,接合部を意識し て多少要素分割を細かくしているだけであり,この提案 モデルを全体系解析モデルに使用することができる.

対象橋梁のような上路式鋼トラス橋においては、橋軸 直角方向に地震動を作用させた場合に、支点部の対傾構 がよく損傷する.本橋梁も対傾構で損傷したため、照査 対象部材を対傾構(ブレース材)とした.対象部材(ブ レース材)の限界値 R_d は、本提案モデルでモデル化した パネル(図-10参照)に対して繰り返し載荷解析を行い、 そこから得られるブレース材の最大軸力(最大耐力)で ある.なお、限界値 R_d を算出する解析モデルについては、 学会示方書では実験等で十分に検証されたものとしてい る.

次に、部材の安全性の照査が満足した上で、対象トラス橋に対して、式(1)による構造全体の安全性の照査を行う.前述の地震応答解析において、構造全体系が最も安全限界に近づいた時刻の地震作用力の合計(構造全体系に作用している地震作用力)を S_d とする.その時刻の荷重分布をもとに静的漸増地震荷重を定義し、全体系解析モデルに対して Pushover 解析を行う.Pushover 解析で得られた構造全体系の最大耐力 R_d が、前述した地震作用力 S_d より大きいことを確認して構造全体の安全性の照査は終わる.これら一連の照査法の詳細については、学会示方書³を参照されたい.

このように、構造安全性の照査において、本提案モデ ルを使用するとブレース材の最大耐力までを評価するこ とになり、塑性化を許容しない耐震設計と比較して、合 理的な設計になると考えられる.

7. まとめ

本研究では、上路式トラス橋の支点上対傾構に着目し、 実橋梁の構造を忠実に再現した 1/2 スケールの供試体を 用いて、漸増変位繰り返し載荷実験を行い、対傾構を含 むパネル構面の終局挙動を実験的に明らかにした. さら に、パネル供試体の挙動を再現できる解析モデルを提案 し、実験の再現解析を行った.本研究で得られた結論を 以下に示す.

- 1. パネル試験体は最大荷重到達後に下側のブレース材 に部材座屈が発生し、その後、ブレース材接合部の ボルト孔位置で亀裂が発生し破壊に至った.
- 実験から得られた荷重-変位曲線は、鋼製橋脚にみられるような紡錘形の履歴ループを描いており、パネル構面としては一定のエネルギー吸収が期待でき、ブレース材の損傷を許容できる可能性を示した.
- 実験から得られたブレース材軸力の最大値は、両端 を剛結とした場合の設計座屈耐力により近い値とな った.
- ブレース材両端を剛接合として提案した解析モデル は、実験結果とよく一致しており、ブレース材含む パネル構面の挙動を十分に再現できることを示した.
- ブレース材両端を固定とした本提案モデルを用いて 求められる最大耐力を限界値として、トラス橋の補 強設計を行うことで、必要以上の補強をせずに合理 的な耐震補強が期待できる。

謝辞

本研究は、土木学会・鋼構造委員会・高精度な数値解 析法を用いた鋼橋の耐震性能照査に関する調査研究小委 員会小委員会(委員長:野中哲也)の活動内で実施したも のであり、実験結果等について本小委員会の委員の方か ら貴重なご意見をいただきました.ここに記して謝意を 表します.

参考文献

- 日本道路協会:道路橋示方書(V耐震設計編)・同解 説,丸善,2002.
- 2) 土木学会:2018 年制定 鋼・合成構造標準示方書 [耐 震設計編],丸善,2018.
- 日本道路協会:道路橋示方書(II鋼橋・鋼部材編・同 解説),丸善,2017.
- 4) 松村政秀,吉山純平,山口隆司:ガセットプレート を考慮したトラス橋圧縮部材の終局強度と変形に関

する研究,構造工学論文集, Vol.59A, pp.169-179,2013.

- 5) 宇佐美勉,斎藤直也,船山淳起,野中哲也,廣住教 士,菅付紘一,渡辺孝一:繰り返し水平荷重を受け る鋼製剛結トラスの破壊実験と解析,構造工学論文 集,Vol.57A, pp.500-5013, 2011.
- 今瀬史晃,宇佐美勉,舟山淳起,王春林:繰り返し 荷重を受ける鋼トラスの進行性破壊に関する実験と 解析,土木学会論文集 A1(構造・地震工学),Vol.68, No.4,713-729,2012.
- 柴田道生,中村武,若林:鉄骨筋違の履歴特性の定 式化-その1定式関数の誘導,日本建築学会論文報 告集,第316号, pp.18-23, 1982.
- 柴田道生,若林:鉄骨筋違の履歴特性の定式化-その2 定式関数の誘導,日本建築学会論文報告集第320号,pp.29-35,1982.
- 竹内徹,秦康,松井良太:局部座屈を伴うH形断面 ブレースの累積繰り返し変形性能,日本建築学会構 造系論文集集,73巻,第632号,pp.1875-1882,2008.
- 竹内徹,中村悠,松井良太:接合部固定度を考慮したH形断面ブレースの座屈後履歴性状及び累積変形性能,日本建築学会構造系論文集,75巻,第653号,pp.1289-1297,2010.
- 11) 馬越一也、奥村徹、吉野廣一、野中哲也:繰り返し 荷重下における鋼橋の2次部材のポストピーク挙 動を考慮するモデル化と鋼アーチ橋への適用、構造 工学論文集, Vol.65A, pp. 214-224, 2019.
- 12) 奥村徹,馬越一也,野中哲也,吉野廣一:非エネル ギー吸収部材の損傷を伴う上路式鋼アーチ橋の構造 全体系の地震時終局挙動,構造工学論文集,Vol.66A, pp.264-273,2020.
- 13) 土木学会:2016 年制定 鋼・合成構造標準示方書総則 編・構造計画編・設計編,丸善,2016.
- 14) 加村隆志,北後寿:摩擦面に薬剤処理を施した高力 ボルト摩擦接合に関する実験的研究,日本建築学会 構造系論文集,第487号,pp.131-140,1996.
- 15) 本多克行,山口隆司,橘肇,吉岡夏樹,齊藤史朗, 中村定明:既設構造物の高力ボルト摩擦接合継手接 合面への改良した錆促進剤の適用に関する検討,構 造工学論文集 Vol.64A, pp.491-502, 2018.
- 株式会社地震工学研究開発センター: SeanFEM ver.1.22 理論マニュアルと検証, 2007.

(2021年9月14日受付) (2022年2月1日受理)