異なる8の字軌跡設計における流体力計測

[研究代表者] 北川一敬(工学部機械学科)

研究成果の概要

羽ばたき周波数約 16.8[Hz]の 8 の字運動を行う両翼羽ばたき飛行機の製作に成功した.今年度は昨年度の翼端の 軌跡が対称な機体(機体 i)に加え,ハチドリの翼端の軌跡を模倣した機体(機体 i)を製作し可視化,流体力計測を行った.また,初期迎角を-10~-80[deg]の間で 10[deg]ずつ変更して行った.両機共に,上死点・下死点付近における翼 膜の弾性変形によるフェザリング運動の確認した.フラッピング運動による流体力の生成,翅骨組みの弾性,翅表面 の変形により,可視化結果は設計計算の軌跡と比べ異なった軌跡をとった.流体力は,両機共に-50[deg]の際に最大 の流体力を生成した.機体 i と機体 ii の羽ばたき 1 周期の平均流体力はそれぞれ,羽ばたき周波数 11.9[Hz]において 1.08[-],羽ばたき周波数 12.7[Hz]において 0.8[-]となった.推進方向の平均流体力は両機共に-2.77[-]となった.可視 化結果から,機体の振動が大きいことで流体力測定装置が振動していることが確認できた.

研究分野:流体力学

キーワード: 生物流体力学, 昆虫の飛翔, 羽ばたき飛行機, 生物模倣技術

1. 研究開始当初の背景

生物の羽ばたきはホバリング,急降下,急旋回や前進な どの曲技飛行を行っている.鳥類の Re 数≈ O(10⁵)で, 粘性力と慣性力の両方が影響し,航空機では Re 数 > O(10⁶)で,粘性よりも慣性力が支配的な領域にな る.昆虫,ハチドリや羽ばたき飛行機は,航空機と 比ベ μRe 数範囲(粘性力が支配的な領域)で且つ粘性力を 利用した羽ばたき飛行が可能となる.飛翔昆虫の研究はト ンボ,蝶,蜂,蝿,蛾や甲虫に至る.研究対象の甲虫は他 昆虫と比較して,突風等の外乱に強い.また,胴体部分の 容積が大きく,実機設計製作において,各種機器の搭載が 可能な大きな特徴がある.

2. 研究の目的

本研究では、上下、回転と捻りの羽ばたき運動状態を生 物模倣し、甲虫型小型無人飛行体の設計開発を目指す.特 に、8の字運動時の羽ばたき翼周りの流れ場と流体力発生 機構と空気力学的特性を解明し、安定した羽ばたき飛行条 件を導出することである.上記の関係を明らかにするため に、以下の方法で研究を遂行する.

(1) 軌跡と初期迎角の異なる羽ばたき運動の空気力学特

性・性能比較と飛行へのチャレンジ. (2)羽ばたき時に発生する前縁剥離渦と翼端渦の生成効果 と流体力発生機構との関係と特徴の調査.

3. 研究の方法

(1)羽ばたき飛行機の製作

3D プリンターを用いた機体部品の造形

(2)羽ばたき時の流れ場の可視化

スモークワイヤ法,及び粒子画像流速測定法(PIV)により 羽ばたき時の渦の可視化を行い,羽ばたき時の流れ場の特 徴を測定する.

(3)羽ばたき時非定常流体力の計測

ひずみゲージを用いた 2 ゲージ法の流体力測定器を製作し,動ひずみ測定器,オシロスコープを用いて流体力を 計測する.

4. 研究成果

図1は8の字羽ばたき飛行機の概要を示す.羽ばたき機構 はモータ及び伝達部を除いて左右対称になっており,羽ば たき運動時左右の翅は同じ運動を行う.羽ばたき飛行機は モータから出力した回転運動をモータに取り付けた歯数 12 のピニオンギアから歯数 36 のスパーギア①を通して軸 に伝達され, 歯数 12 のピニオンギアから歯数 48 のスパー ギア②に速度伝達比 12 で伝える. すべてのギアのモジュ ールは 0.3 となる. スパーギア②の回転運動をピストン・ クランク機構により翅を 110[deg]に傾ける羽ばたき運動 に変換する. 胴体のカーボンロッドは \$ 0.7[mm]を使用し た.

図2 羽ばたき運動の可視化

図 2 はハチドリの翼端の軌跡を模倣した機体 (機体 ii) の無風時の羽ばたき軌跡の撮影結果を示す.羽ばたき飛行 機は T*=0[-]の T.D.C からフォワードストロークを開始す る. T*=0.0.6[-]まで-Zs 方向ヘリード・ラグ運動を行った 後,翼膜の弾性変形と羽ばたき機構の迎角変化によるフェ ザリング運動を行う. T*=0.06[-]から T*=0.37[-]において低 迎角で縦方向ヘリード・ラグ運動を行う. T*=0.37[-]から リード・ラグ運動を行いながら翅は低迎角から高迎角へ変 わる. T*=0.44[-]において B.D.C となる. T*=0.44[-]からバ ックワードストロークを開始し, T*=1.0[-](=0.0[-])となる. T*=0.44[-]から T*=0.54[-]において Zs 方向に動きながら回 転運動を行う. T*=0.54[-]から T*=0.86[-]まで高迎角のまま 縦方向にリード・ラグ運動を T*=0.86[-]から後ろ方向へ回 転運動を行いながら高迎角から低迎角に変わり始める.

図 3 は機体 ii の初期迎角が-50[deg]における羽ばたき運 動1周期の流体力の時間履歴を示す. 横軸は羽ばたき運動 の無次元周波数 T*[-]を示す. モータへの印加電圧は 4.0[V] で羽ばたき周波数は 12.7[Hz]であった. T*=0[-]は上死点 (T.D.C), T*=0.53[-]で下死点(B.D.C)となり, T*=1[-]で T.D.C となる. アップストローク/ダウンストローク比は 0.89[-] となった. 揚力方向の流体力 Fh*においては、羽ばたき中 に山が2箇所あり、負の力を生成する谷は2箇所ある.1 周期の Fh*平均値=0.79[-]となった. ダウンストローク時 の流体力の平均値=2.65 で、アップストローク時の流体力 の平均値=-1.62[-]となった. アップストローク・ダウンス トローク共に負の流体力を生成されているため,安定して 流体力を生成できていないことが確認できた. 推力方向の 流体力 Fv*においては, T*=0.1[-]付近で-Xs 方向への運動 がみられ、その後1周期を通して、振動していることが確 認できる.