中心圧縮柱の非線形座屈に関する研究 (その11:モーションキャプチャによる部材変形の計測)

正会員	〇鈴木	敏志*	宮木	彩乃**
正会員	西村	功***		

座屈荷重	幾何学的非線形	材料非線形
静的載荷実験	正方形断面	モーションキャプチャ

1 はじめに

既報(その9)に示した正方形断面鋼材の座屈実験について,部材変形の詳細な計測を目的に追加の実験を行った。部材変形の計測には、モーションキャプチャを用いた。本報では、計測方法の概要と部材変形の計測結果を述べる。なお、図表については、記号Kを付す。

2 部材変形の計測方法の概要

使用した試験体は,既報(その9)に示した断面寸法が24×24mmの正方形断面鋼材(材種:SS400ミガキ四角棒)である。また,試験機は,既報(その6)に示したものと同様である。試験体概要および試験機のセットアップをそれぞれ表 K-1 および図 K-1 に再掲し,詳細な説明は割愛する。なお,モーションキャプチャによる部材変形の計測を行う試験体は,各試験体4本目の試験となるため,実験結果には,表 K-1 に示す試験体名の後に No.4 を付すこととする(例:24A-No.4)。

使用したモーションキャプチャは,光学式のモーショ ンキャプチャであり,計測対象物に反射マーカーを設置 し,専用のカメラを複数台使用して対象物の計測を行う ものである。光学式の場合,計測対象に設置したマーカ ーがカメラの計測範囲から外れると計測できないという デメリットがあるものの,他の形式のモーションキャプ チャと比べて,計測の位置精度が高いことが特徴である。 また,複数台のカメラを用いることで,3 方向(X・Y・Z 軸)の位置を計測することができる。

計測に使用したカメラ (OptiTrack 製 Flex3) および反 射マーカー(直径 12.7mm)を写真 K-1 に示す。また,試 験時のモーションキャプチャによる部材変形の計測状況 を写真 K-2 に示す。カメラの計測精度は約 0.1mm であり, 本実験では 3 台のカメラを使用した。反射マーカーは試験 体の上面に等間隔になるように接着剤で貼り付けた。な お,試験体長さが短い試験体 24A~24D については,上面 のみでは計測点数が少ないため,試験体の側面にも等間 隔にマーカーを貼り付けた。さらに,試験体を固定して いる両端の治具の側面および上面にも反射マーカーを設 置し,データを分析する際の基準点となるようにした。

Nonlinear Buckling of Bending Columns (Part XI : Measurement of Deformation Curve Using a Motion Capture System)

表 K-1 試験体概要

試験体名		24A	24B	24C	24D	24E	24F	24G	24H	24I		
部材長さ		L	mm	210	425	635	845	1060	1270	1480	1690	1850
幅 B mm			24									
厚さ H mm			24									
断面積 A mm ²			576									
断面2次モーメント I mm ⁴			27648									
断面2次半径 i mm			6.93									
	細長比	Л	1	15.2	30.7	45.8	61.0	76.5	91.7	106.8	122.0	133.5
	基準化細長比	Λ'	Ξ.	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.19
	断面係数	Ζ	mm ³	2304								
辺	塑性断面係数	Z_p	mm ³	3456								
方	全塑性モーメント	M_p	kN • mm	1811								
向	最大モーメント	M_{u}	kN • mm	2001								
	降伏モーメント	M_y	kN•mm	1207								
対角方向	断面係数	Ζ	mm ³	1629								
	塑性断面係数	Z_p	mm ³	3258								
	全塑性モーメント	M_{p}	kN • mm	1707								
	最大モーメント	Mu	kN • mm	1887								
	降伏モーメント	M.	kN • mm	854								

写真 K-1 計測用カメラ(左)と反射マーカー(右)

写真 K-2 モーションキャプチャによる計測状況

*Satoshi Suzuki, **Ayano Miyaki, ***Isao Nishimura

例として、図 K-2 に試験体 24E-No.4 の反射マーカー設 置位置を示す。本実験では、試験体の両端を治具にはめ 込み、両端が固定端とみなせる状態で実験を行っている。 部材変形の計測に際しては、既報(その1~その3)に示 される理論予想との比較を行うため、座屈長さ(表K-1に 示す部材長さLの半分)に対する部材変形の計測を目的と して、図 K-2 に示すように試験体中央を中心に左右非対称 な反射マーカーの設置計画とした。紙面の都合上、各試 験体の反射マーカーの設置間隔の詳細については割愛す るが、中央から右側(密に設置する側)の反射マーカー の設置間隔は、35mm~55mm の範囲で計画した。計測条件 は、サンプリング周波数を15Hz として、各反射マーカー の XYZ 軸の座標をデジタルデータで PC に記録した。

3 部材変形の計測結果

代表的な計測結果として、試験体 24B・24E・24I の 3 つ について,モーションキャプチャによる計測で得られた 座屈直前から軸方向変形 δ_v=90mm まで(試験体 24B は,計 測途中で反射マーカーが1つ外れたため80mmまで)の部 材変形を図 K-3 に示す。ここで、既報(その9)で述べた 実験結果と対応させると、試験体 24B-No.4 および 24E-No.4 は、座屈後の挙動が不安定となったものであり、試 験体 24I-No.4 は、安定な座屈後挙動となったものである。 また,座屈の方向は,試験体 24B-No.4 が辺方向,試験体 24E-No.4 および 24I-No.4 が対角方向となったものである。 図 K-3 の横軸は、試験体の部材軸方向(X 軸の計測データ) であり、縦軸のR軸方向は、試験体の軸方向外に変形した 方向に対して垂直の位置から見たときの部材変形をY軸お よびZ軸の計測データから算出したものである。なお、モ ーションキャプチャでは,反射マーカーの芯の座標位置 が計測されるため、試験体の芯での値に換算して図化を 行っている。計測結果を見ると, 座屈後の挙動が不安定 となった試験体 24B-No.4 および 24E-No.4 は、座屈直前お よび座屈時までR軸方向の変形量は小さく、部材変形は、 ほぼ軸方向変形のみの直線となっていることが分かる。 一方, 座屈後の挙動が安定となった試験体 24I-No.4 は, 軸力が最大荷重となる座屈時よりも前から,R 軸方向にも 変形が進んでいることが読み取れる。

今回,初めての試みとして,モーションキャプチャに よる部材変形の計測を行った。なお,軸方向変形につい ては,接触型変位計による計測結果と比較し,高い精度 で同じ値が得られていることを確認している。また,試 験体中央に対する部材変形の左右対称性については,今 後詳細な検討を行う予定である。 次報(その12)では,得られた部材変形の計測結果と 理論予想を比較する。

* 愛知工業大学 工学部 建築学科 准教授
** 元愛知工業大学大学院 工学研究科博士前期課程
*** 東京都市大学 工学部 建築学科 教授

* Assoc. Prof., Dept. of Architecture, Aichi Institute of Technology ** Former Graduate Student of Eng., Aichi Institute of Technology *** Prof., Dept. of Architecture, Tokyo City University