有限要素法を用いた座屈拘束ブレースの拘束効果に関する基礎的研究

座屈拘束ブレース	一方向載荷	拘束効果
座屈モード	繰返し載荷	準静的解析

1. はじめに

鋼構造で用いられる制振部材の座屈拘束ブレースは高 軸力化・高性能化が求められている.座屈拘束ブレース は、圧縮領域においても引張領域と同等の安定した履歴 性状を示すために、芯材の曲げ座屈を防止するよう、ま た座屈拘束材の局部崩壊を防止するように設計している.

本研究では、鋼モルタル板で補剛された座屈拘束ブレ ースを対象として、構面内に配置した際に正負交番繰返 し載荷で安定した履歴性状を示すために、一方向載荷及 び正負交番繰返し載荷時の座屈モードの発生を準静的解 析で再現することを目的とする.そして各パラメータが 与える座屈拘束効果、座屈モード数及び履歴性状の安定 性について有限要素法による数値解析によって検証する.

2. 解析概要

図1に本研究の解析モデルを示す.各部材及び境界条件 を同図下に示す.解析モデルは芯材,補強材,モルタル, 角形鋼管及びスペーサで構成される.芯材,補強材,モ ルタル,及びスペーサ要素は8節点ソリッド要素とし,角 形鋼管は4節点シェル要素としている.各部材の相互作用 は接触方向を剛接触として,接触接線方向はクーロン摩 擦を考慮している.芯材両端十字断面を剛体面としてお り,重心位置に代表節点(A点及びB点)を設けている. 構面高さ3500mmを想定しているため,芯材軸方向の延長 線上に位置させている.境界条件は,A点で変位・回転す べて拘束しており,B点で荷重方向のみ自由とし,その他 の変位・回転は拘束している.

表1に解析で使用したパラメータを示す.芯材とモルタ ルの隙間g,モルタルの圧縮強度F_c及び角形鋼管板厚tを 変数としている.表2は本研究で使用した材料モデルを示 す.図2(a)は解析で使用した鋼材の真応力度対数ひずみ 度関係を示す.芯材は移動硬化則及び等方硬化則を考慮 し,その他の鋼材は移動硬化則のみとしている.図2(b) はモルタルの応力度ひずみ度関係を示す.モルタルに使 用した応力度ひずみ度関係は文献¹⁾を参考に作成しており, 圧縮側では塑性域で弾性係数の1/100で硬化するものとし て,引張側では軟化勾配を有する線形軟化モデルとして いる.

載荷条件として,加力方向を図1に示すB点に構面内 水平方向(Q)とし,一方向載荷及び一定振幅下での正負交 番繰返し載荷を行い,変位制御による準静的解析とする. 図3に正負交番繰返し載荷パターンを示し,芯材の軸変形

Fundamental study on restraining effect of buckling restrained braces using finite element method

正会員	〇太田	幹久*1	同	木藤	一輝*2
同	薩川	恵一* ³	同	戸張	涼太 * 4
同	山岡	賢史*4			

- 代表即点 1; 拘束: $U_x = U_y = U_z = \theta_x = \theta_y = \theta_z$ B - 代表即点 2; 自由: U_x 拘束: $U_y = U_z = \theta_x = \theta_y = \theta_z$

図1 解析モデル概要

1	表 1	解机	斤パラ	メータ	1
				拘束材	

101421				刊术内		
板厚寸法 (mm)	幅厚比	F_c (N/mm ²)	b (mm)	<i>h</i> (mm)	t (mm)	g (mm)
PL-12×114	9.5	10 21 36 45	137.6	176	1.6 3.2 6	1 2 3 4

 F_e :圧縮強度 b:モルタル幅 h:モルタル高さ t:鋼管板厚 g:隙間

表2 材料モデル

294	3	15	1/3 F _c 1/10 F _c
20	-		1/10 F _c
20	5000		
205000 14			
—			
	0.3		0.15
	72 . Middal	0.3	0.3

OOTA Mikihisa*1,KITO Kazuki*2,SATSUKAWA Keiichi*3 TOBARI Ryota*4,YAMAOKA Kenji*4 δが軸ひずみの4%となるように強制変形させる.

図4に解析方法の有効性を示す.同図で示す実験結果及 び解析結果は、ブレースに荷重を作用軸力方向のみに加 えた対比を示しているが、良い対応を示している.

3. 解析結果

図 5 にモルタルの圧縮強度 (36N/mm²) 及び鋼管板厚 (3.2mm)を一定として,隙間 g(1~4mm) (以下,隙間 g が 1mm の場合 g(1mm)と示す)を変数としたときの一方向載 荷時の荷重変形関係を示す.g(1mm)または g(2mm)のモ デルは,安定した荷重変形関係を描いているが,隙間 3mm 以上では一時的な荷重低下が見られる.

図 6 は芯材塑性化部の座屈モードと図 5 右に示す地点 (a~h)の各隙間での塑性化部の座屈モードの推移を示す. g(1mm)の非線形領域以降の座屈モードは,非線形領域に 入る直後に小さい軸変形量で高次モードへ移行する.一 方,g(1mm)以外では,非線形領域近傍まではg(1mm)と 同様なモードで推移するが,その後の次モードへ移行は 大きい隙間ほど,緩やかである.図5のg(3mm)及びg(4mm) の荷重変形関係において,耐力が一時低下した後に再上 昇する際には,モードの急激な移行が現れた.上記傾向 は,本報の変数の範囲内であるが,モルタルの圧縮強度 及び鋼管板厚を変化させても同様の結果となった.

図 7(a) と図 7(b) に図 5 同様のモルタルの圧縮強度及び 鋼管板厚の解析条件として,隙間 g(1mm) と g(3mm)を一 例として正負交番繰返し載荷時の 4 サイクルまでの荷重変 形関係を示す.g(1mm) は安定した履歴挙動を示している. 一方,g(3mm)の1,2 サイクルにおいて,引張側では安定 した履歴挙動を示しているが,圧縮領域では,不安定な 履歴挙動を示している.

図 8(a) と図 8(b) に隙間 g(1mm) とg(3mm)の各サイクル での芯材塑性化部の座屈モードの移行推移を示す.両図 では、軸変形の進行とともに 1,2 サイクルでは座屈モー ドが高いモードへ移行する.一方で,隙間 g(1mm)では、 3 サイクル目以降でも変形の進行とともに座屈モードが高 次に移行するのに対して,隙間 g(3mm)の場合では3 サイ クル目以降に座屈波形の高次へのモード移行は見られず、 17 次モード以上への移行は見られていない.

図 9(a) と図 9(b) は隙間 g(1mm) と g(3mm) の場合で,4 サイクル目の最大圧縮時(図 7 の●印)の変形図を示す.隙 間 g(1mm) と g(3mm)で塑性化部の変形を比較すると,隙 間 g が大きい方が塑性化部端部に大きな変形があらわれる.

4. まとめ

本研究では、構面内に配置した座屈拘束ブレースを対 象として有限要素法による準静的解析の有効性を確認し た.また、隙間が芯材への拘束効果に大きく影響してい ることを確認した.

 村井正敏ほか:鋼モルタル板を用いた座屈拘束ブレースの実験的研究,日本建築 学会構造系論文集 第569号,105-110,2003年7月
2)佐伯英一郎ほか:有限要素法によるアンボンドブレースの弾塑性挙動解析と実験

結果との比較,日本建築学会構造系論文集 第484号,111-120,1996年6月

*1愛知工業大学	元学部生(現 JFE シビル株式会社)	*1Former undergraduate, Aichi Institute of Technology
*2愛知工業大学	大学院生	*2Graduate student, Aichi Institute of Technology
*3愛知工業大学	教授 博士(工学)	* ³ Professor, Aichi Institute of Technology, Dr.Eng.
*4JFE シビル株式	式会社	*4JFE Civil Engineering & Construction Corporation