重力ダム上流面に作用する動水圧の影響について

木 村 勝 行*

The Consequences of Hydrodynamic Pressure Acting on the Upstream Surface of Gravity Dams

Katuyuki KIMURA

要 旨 地震時のいわゆる動水圧を求めるには Zangerの実験式あるいは Westergaardの理論式がある. 設計に際していずれの方法を用いるか,設計者の間で絶えず論議されるところである.ここでは上流面が鉛 直部と傾斜部とからなる場合について,これが設計断面に与える影響を検討した.

I.まえがき

重力ダムの形状は Middle third の条件または滑動に 対する安定条件を満足するような上下流面の組合せの中 から断面積を最小とするものが選ばれるべきである。日 本大ダム会議のダム設計基準には,地震時に堤体上流面 に直角に作用させる動水圧の算出の際は Zangerの 実験 式あるいは Westergaard の公式を用いることにしてい る¹⁾. この両式は上流面が鉛直または一定の傾斜につい てのものであるが^{21,31}, 最近の上流面の形状は上部を できるだけ鉛直にし,堆泥面以下に一定こう配をつけて 断面積の節減をはかるものが多い.このような鉛直面と 傾斜面との組合せのダムに Zanger の実験式を適用する 方法として,アメリカ開拓局のダム設計基準の中では次 のような取扱いをしている⁴⁾.すなわち,(1)ダム上流面 の鉛直部分の高さがダムの全高の半分に等しいかまたは それより大きければ全部を鉛直として解析する.(2)ダム

の上流面の鉛直部分の高さがダムの全高の半分より少な ければ、ダムの上流面と貯た面との交点とダムの上流面 と基礎との交点とを結んだ傾斜線に作用する圧力を用い る.

Zanger はダムの上流面が鉛直部と傾斜部との組合せ からなる場合についての動水圧分布も実験により得てい る³⁾.

そこで、ここではこのような場合に対して動水圧を 3 つの方法で算出し、ダム基礎面における Middle third の条件を満足する 最小下流面こう配を 求め 比較検討す る.

- 1. ダム上流面の形状にかかわらず,全部を鉛直とみ なしてWestergaard公式を適用する.
- アメリカ開拓局の設計基準と同様の取扱いをし、 Zanger の実験式を適用する。
- 3. Zanger の実験による動水圧を用いる.

Ⅱ.基準断面と外力

計算に用いるダムの基準断面と外力の概略は図-1に 示してある.基準断面は3つの直角三角形の組合せとす る.

(記号と説明)

H(m):ダム高, H_f(m): 余裕高 (H<50mの場合 H_f=1.0m; 50m≤H<100mの場合H_f=2.0m; H≥ 100mの場合H_f=2.5m), H_d(m):動水圧水深 (H_d =H-H_f), H_s(m):静水圧水深 (H_s=H_d+ $\frac{1}{2}$ H_f), H_c(m):堆泥高, B(m):堤長幅 (B=^{*}4.0mとす る), H₁(m):下流側水位 (H₁=0.08×Hとする), I(m):堤底上流端から排水孔直下堤底までの距離(排 水孔は上流面および底面から6mの所にあるとする), n: フィレットこう配 (Zanger の実験時のものを使 用), m:下流面こう配, r(t/m):堤体の単位重量 (r=2.3t/mとする), w(t/m):北の単位重量 (w = 1 t/mとする), w_s(t/m):堆泥の水中重量 (w_s =1.0t/m とする), μ :揚圧力係数 (μ =0.35 とす る), k:堤体震度, c_s:泥圧係数 (c_s=0.5とする)

以上の記号を用いて鉛直力と水平力および座標原点O から作用点までの水平距離xと鉛直距離 yを求める.

【鉛直力】

$$\begin{split} & \lim_{\mathcal{O} \times \mathbb{T}} \left\{ \begin{array}{l} P_{v} = -\frac{wnH_{c}(2H_{s} - H_{c})}{2} \\ & x = -\frac{nH(3H_{s} - 2H_{c})}{3(2H_{s} - H_{c})} \\ & x = -\frac{mH(3H_{s} - 2H_{c})}{3(2H_{s} - H_{c})} \\ \\ & \overline{\nabla \times \mathbb{T}} \end{array} \right\} \\ & \overline{\nabla \times \mathbb{T}} \left\{ \begin{array}{l} P_{v1} = -\frac{wmH_{1}^{2}}{2} \\ & x = H_{c} + m(H - \frac{H_{1}}{3}) \\ \\ & \overline{\mathcal{M}} \mathbb{T} \left\{ \begin{array}{l} P_{vs} = \frac{w_{s}nH_{c}^{2}}{2} \\ & x = -\frac{nH_{c}}{3} \\ \\ & \overline{\mathcal{M}} \mathbb{T} \left\{ \begin{array}{l} U_{1} = -\frac{w((1+\mu)H_{d} + (1-\mu)H_{1})I}{2} \\ & x = \frac{((1+2\mu)H_{d} + 2(1-\mu)H_{1})I}{3((1+\mu)H_{d} + (1-\mu)H_{1})} \\ \\ & \overline{\mathcal{M}} \mathbb{T} \left\{ \begin{array}{l} U_{2} = -\frac{w(\mu H_{d} + (2-\mu)H_{1})(nH_{c} + mH - I)}{2} \\ & x = 1 + \frac{(\mu H_{d} + (3-\mu)H_{1})(nH_{c} + mH - I)}{3(\mu H_{d} + (2-\mu)H_{1})} \\ \end{array} \right\} \end{split} \end{split}$$

【水平力】

外力(自重も含む)としてはこの外に動水圧 Pa がある.

 P_d まで含めた外力の合力が底面を通る点の座標を x_0 とすると、 $x_0=\sum M/\sum V$ であり、この点が底面の中央の V_{40} の下流端に一致する時には

$$x_0 = \frac{\sum M}{\sum V} = 2(nH_c + mH)$$

となる. ただし,∑M は鉛直力,水平力の座標原点Oに 関するモーメントの総和であり,∑V は鉛直力の総和で ある.

この式が底面における Middle third の条件を満足する最小断面を求める式である. ここでは nは既知数とし

244

て与えるので上式はmについての4次方程式となる.

Ⅲ. 3方法の動水圧の分布および合力とその作用点

検討の対象とする上流面の形状を図-2に示す.

動水圧が作用する面は

第1の方法すなわち Westergaard 公式による場合は Shape 1.~Shape 6. についてABC面

第2の方法 すなわち Zanger の実験式を用いる場合 は, Shape 1.~Sape 3. については, AD面; Shape 4.~Shape 6. についてはABC面

第3の方法すなわち Zanger の実験による値を用いる 場合にはShape 1.~Shape 6.についてはABD面 である.

y(m):ダム底面からの高さ

pa(t/m):ダム底面から yの位置における動水圧力

3つの方法による動水圧の合力および作用点は表―1 のとおりである。

Ⅳ. 計算結果

表一1の動水圧を用いて前式によりShape 1.~Shape 6.についての下流面こう配mを求めると結果は図一4お

よび図-5のようになる.

V.考 察

図—4および図5から同一高さのダムの下流面こう配 mは動水圧としてZangerの実験値,Zangerの実験公式 そしてWestergaardの公式にょり算出ものを使用した 順に大きな値が得られている.つまり,Zangerの実験 公式およびWestergaardの公式はZangerの実験値より も安全側の公式になっているといえる.

動水圧算定の実用公式としての Zanger および Westergaard の両公式についての比較をしてみると,

Shape 1., Shape 2.および Shape 3. については, す なわち Zangerの公式で動水圧の鉛直成分を考慮する場 合は経済的断面という点から Zangerの公式の採用が望 ましいが, Spape 4., Shape 5.および Shape 6. につ いては, すなわち Zangerの公式でも動水圧の鉛直成分 か考慮されない場合は, この両公式はほとんど同じ結果

	Shape	鉛直力(t) ×wkHs ²	水平力(t) ×wkHs ²	$\begin{array}{c} \mathbf{x} \ (m) \\ \mathbf{X} \mathbf{H}_{s} \end{array}$	$y(m) \times H_s$
Westergaard の公式	1.~6.		$\frac{7}{12}$		<u>2</u> 5
Zanger の 実験公式	1.	0.1237	0.4616	0.1076	0.4017
	2.	0.2223	0.3850	0.2319	0.4017
	3.	0.3006	0.3006	0.4017	0.4017
	4.~6.		0.5303		0.4017
Zanger の 実験による値 (上段:鉛直部 下段:傾斜部)	1.		0.0550		0.8433
		0.1428	0.3996	0.1242	0.3477
	2.		0.0563		0.8481
		0.2488	0.3233	0.2736	0.3554
	3.		0.0478		0.8554
		0.3037	0.2278	0.4899	0.3675
	4.		0.2053		0.7284
		0.1540	0.2874	0.1354	0.2527
	5.		0.1743		0.6930
		0.2467	0.2136	0.3008	0.2605
	6.		0.3495		0.5447
		0.1570	0.1465	0.1422	0.1327

表 一 1

を与える(下流斜面こう配が0.01ちがうだけである).

Ⅵ. あとがき

既設の重力ダムで動水圧を観測した例は少ない.しか し、一部の観測記録によると、動水圧は池底より幾分高 い標高において最大となっている.そして合力は実測値 と Westergaard 式による計算値とがかなり良好な一致 をみているのである⁵⁾.

しかし、ここで取扱ったような形状の上流面のダムについては、その観測はほとんど行なわれていない.

図-4および図-5のmを求める際の堤体に働く地震 による慣性力は震度法によるものである。そして高さが 数10m以下のダムでは地震動の主要動の周期がダムの固 有振動周期にくらべてかなり長い。このような場合は震 度法の適用も妥当であろう。しかし、それより高いダム ではこの両者の周期が接近すると考えられ、震力係数を ダム上部におけるほど大きくとるなどの動的な考慮が必 要になると思われるが、震度法の適用限界についてのは っきりした基準はない。

また,Westergaard式もZangerの実験式も動水圧は 正弦的な定常運動の場合のものである.実際の地震動の ように不規則な運動の場合の動水圧は、これらの値より 大きくなると考えられている6).

いずれにしてもこの種の問題を解決するためには実測 値が必要であるので、今後、この種の観測が行なわれる ことを願うものである.

参考文献

- 1) 日本大ダム会議:ダム設計基準,1969年11月
- 2) Westergaard, H. M.:Waterpressures on Dams during Earthquakes, 1933年 , Trans. ASCE, 98.
- Zanger, C. N. : Hydrodynamic Pressure on Dams due to Horizontal Earthquake Effects,

Bureau of Reclamation, 1952年5月

- アメリカ開拓局編:ダムの計画と設計
- 5) 岡本舜三:耐震工学,1971年9月,オーム社, P. 339~340
- 畑中,金多他:耐震設計施工,1968年10月,朝倉書
 店, P. 405

248

図 4

図 5