弾性波トモグラフィ法の精度向上に関する研究 (弾性波動伝搬特性に及ぼす介在物の影響)

コンクリート	非破壊試験	弾性波トモグラフィ法
内部探查	波動伝搬特性	介在物

1. はじめに

筆者らは、長寿命化建築技術の研究開発の一環として、 従来からコンクリートの内部探査を目的とした弾性波伝 搬速度トモグラフィ法の適用性について、一連の基礎的 検討¹⁾⁻³⁾を行っており、前報³⁾では、発泡スチロール、 ABS樹脂および鉄鋼が埋設された試験体を用いて、弾性 波トモグラフィ法による内部探査精度について検討を行 った。その結果、探査対象を構成する母材よりも伝搬速 度の速い鉄鋼埋設部においても、弾性波は鉄鋼部を透過 せずに母材部を迂回した初動波が検出され、見掛け上、 鉄鋼部の伝搬速度が小さく推定される結果が得られた。 そのため、本報では、母材より伝搬速度の速い鉄鋼と遅 い発泡スチロールを介在物として取り上げて、介在物近 傍の弾性波の伝搬特性に及ぼす介在物、弾性波の入・検 出位置の影響について実験的・解析的に検討を行った。

2. 実験方法

2.1 実験の概要

本実験では、表-1および図-1に示すように、100×100× 400mmのモルタル試験体(W/C=60%、骨材寸法=5mm) を使用し、実験要因として介在物の種類(発泡スチロー ルおよび鉄鋼の2種類(寸法は、厚さ×幅×長さ=5×40×100 および10×40×100mmの2種類))および介在物の埋設深さ (以下に示す+側計測面から10、20、30、40および50mm の5種類)、並びに計測方向(+側計測および-側計測の2 種類)を取り上げて、試験体内部の介在物近傍における

弾性波の波動伝搬特性について実験的に検討を行った。 2.2 計測の概要

計測は、ファンクション・ジェネレータで発生させた 弾性波(幅10µsの矩形パルス)を、高速バイポーラ電源に よって約200Volに増幅した後、圧電式の弾性波入力用AE センサ(共振周波数:約1MHz)を介して試験体の所定

SARA /	試験体 寸法 (mm)	母材モルタル		埋設物詳細	
試験体 記号		W/C	骨材寸法	插 新	」 厚×幅×長
		(%)	(mm)	1里 为	(mm)
PLAIN	□100 × 400	60	5	-	—
VD05				পত্র আ	5×40×100
VD10				全刊	10×40×100
SL05				舟 台	5×40×100
SL10				<u></u>	10×40×100

表-1 実験の概要

Study on Accuracy Improvement of Internal Evaluation by Elastic Wave Tomography (Effect of Inclusions on Elastic Wave Propagation Palaysian

(Effect of Inclusions on Elastic Wave Propagation Behaviors)

正会員	\bigcirc	山田	和夫*1
同		金森	藏司*2
同		関	俊力*3
同		瀬古	繁喜*4

位置(図-2に示すS1~S7の7箇所が1組)から弾性波を 入力し、図-2に示す検出位置(弾性波の入力位置から対 面するR1~R7と入力点隣接のR8の合計8箇所が1組)に 設置した超小型圧電式加速度ピックアップ(測定上限周 波数:25kHz)で検出した。同一試験体の計測は、図-2 に示す+側計測(ASAI1~ASAI5)と弾性波の入力・検 出面を入れ替えた-側計測(FUKA1~FUKA5)の2方向 で行った。なお、発振用・検出用ピックアップは、何れ も両面テープで試験体表面に直接接着した。検出された 弾性波は、チャージアンプで増幅した後、高速データロ ガー(サンプリングの間隔と個数:0.1µsおよび16,000個 /1データ、分解能:12bit)に一時記憶させ、その後にデ ータ処理用PCに転送して各種のデータ処理を行った。

3. 解析方法

本解析では、図-2に示す介在物が埋設されいている試 験体を対象として、弾性波の入力から検出に至るまでの 波動伝搬特性を調査するために、超音波伝搬シュミレー タ(SWAN21-2D版)を使用して2次元波動伝搬解析を行 った。なお、本解析では、介在物と母材が完全結合して いる場合(以下、弱層無しと略記)と介在物と母材が弱 層を介して結合している場合(以下、弱層有りと略記) の解析を行い、弾性波動伝搬特性に及ぼす弱層の影響に ついても検討を行った。ただし、介在物と母材の界面に 弱層を設けた解析では、弱層の厚さを1mmに設定した。

YAMADA Kazuo, KANAMORI Soji, SEKI Toshikatsu, SEKO Shigeki

4. 結果とその考察

4.1 発泡スチロールを埋設した試験体

図-3は、厚さ5mmの発泡スチロールが30mmの位置に 埋設されている試験体の平均伝搬速度分布(=弾性波の 入力・検出間の直線距離/弾性波伝搬時間)に関する実 験結果(図(b))と解析結果(図(c))を比較したもので ある。なお、図(a)中の破線は、弾性波が介在物を迂回 して伝搬する場合の最短経路を示している。これらの図 によれば、平均伝搬速度に関する実験結果と解析結果は、 何れも介在物を透過して伝搬した直線経路から求まる平 均伝搬速度の計算結果(図中の破線)よりも、介在物を 迂回して伝搬した最短経路から求まる平均伝搬速度の計 算結果(図中の実線)と良く一致しているのがわかる。

4.2 鉄鋼を埋設した試験体

図-4は、厚さ5mmの鉄鋼が30mmの深さに埋設されて いる試験体の平均伝搬速度分布に関する実験結果(図 (a))と解析結果(図(b)および(c))を比較したもので ある。なお、図(b)および(c)の解析結果は、それぞれ鉄 鋼と母材との境界に弱層が無い場合および有る場合の解 析結果を示している。これらの図によれば、平均伝搬速 度の実験結果(図(a))は、介在物である鉄鋼の縦波速 度が母材モルタルと比べて速いにも関わらず、鉄鋼を迂 回して伝搬した最短経路から求まる平均伝搬速度の計算 結果(図中の実線)と良く一致しているのがわかる。一 方、図(b)および(c)に示した解析結果によれば、鉄鋼と 母材との境界面の弱層を無しとした場合の解析結果は、 介在物である鉄鋼を直線透過した伝搬経路から求まる計 算結果(図中の破線)と一致しているが、弱層有りとし た場合の解析結果は、鉄鋼を迂回した最短経路から求ま る計算結果(図中の実線)と一致しているのがわかる。 従って、実際の測定結果において迂回した弾性波が初動 として検出されるのは、鉄鋼と母材との界面に弱層が存 在していることが原因の一つであるものと考えられる。

5. まとめ

本研究の結果、母材モルタルと比較して音響インピー ダンスの小さい発泡スチロール埋設部では、弾性波は基 本的に迂回して伝搬するが、介在物と検出位置が接近し ている場合は、透過した弾性波が検出される場合もある こと、母材モルタルよりも伝搬速度の速い鉄鋼が埋設さ れている箇所の平均伝搬速度が見掛け上遅くなるのは、 母材モルタルと鉄鋼との界面に弱層が存在することによ

って透過弾性波が著しく減衰し、迂回伝搬した弾性波が 初動検出されるためであること、などが明らかとなった。 【参考文献】

- 関俊力他:弾性波トモグラフィ法によるコンクリートの内部探査の推定精度、コンクリート工学年次論文集、 Vol.34、No.1、pp.316-321、2012.7
- 2)関俊力他:弾性波トモグラフィ法によるコンクリートの内部探査に関する基礎的研究、日本建築学会大会学術講演梗概集(近畿)、pp.1181-1182、2014.9
- 3)山田和夫他:弾性波トモグラフィ法 によるコンクリ ートの内部探査結果に及ぼす欠陥種類の影響、日本建 築学会大会学術講演梗概集(東北)、pp.573-574、2018.9

*1 愛知工業大学工学部 教授・工博
*2 愛知工業大学大学院 博士前期課程
*3 愛知工業大学大学院 研究生・修士(工学)

*4 愛知工業大学工学部 教授・博士(工学)

- *1 Prof., Faculty of Eng., Aichi Institute of Technology, Dr.Eng.*2 Master Course, Aichi Institute of Technology
- *3 Research Student, Aichi Institute of Technology, M.Eng.

*4 Prof., Faculty of Eng., Aichi Institute of Technology, Dr.Eng.