(その9:追加の実験)

正会員	〇宮木	彩乃*	鈴木	敏志**
正会員	西村	功***		

座屈荷重	幾何学的非線形	材料非線形
静的載荷実験	正方形断面	

1 はじめに

既報(その4~7)に示した正方形断面鋼材を用いた中 心圧縮の座屈実験について,断面寸法を変更して追加の 実験を行った。本報では,試験体の概要および主な実験 結果について述べる。また,得られた座屈荷重の実験結 果と既報(その1~3)に示した理論予想との比較を行う。 なお,図表については,記号Iを付す。

2 試験体概要

本実験で使用した試験体の寸法および断面性能を表 I-1 に示す。試験体の断面寸法は,試験機の載荷能力(圧縮 力 500kN)などを考慮し,規格サイズの中から,これまで で最も大きい 24×24mm を選定した。部材長さ L は,前報 までと同様に細長比 Λ を基準に設定した。なお,実験では 試験体の両端 75mm を治具にはめ込むため,部材長さ L に 150mm 加えたものが,実際に作製した試験体長さとなる。 試験体名は,細長比 Λ が小さいものから順に A, B, C, D, E, F, G, H, I とし,これまでの試験体と区別するために 頭に 24 を付けて表記する。試験体の本数は,実験結果の ばらつきを確認するために各種類 3 本とした。試験体の材 料は,前報と同様の SS400(ミカギ四角棒)とし,その機 械的性質は,材料試験よりヤング係数 $E=1.98\times10^{6}$ N/mm², 降伏応力度 $\sigma_y=524$ N/mm²,引張強度 $\sigma_u=579$ N/mm²が得られ ている。

試験体名			24A	24B	24C	24D	24E	24F	24G	24H	24I		
部材長さ L mm		210	425	635	845	1060	1270	1480	1690	1850			
幅 B mm					24								
厚さ <i>H</i> mm					24								
断面積 A mm ²					576								
断面2次モーメント I mm ⁴								27648					
断面2次半径 i mm								6.93					
	細長比	Λ	6	15.2 30.7 45.8 61.0 76.5 91.7 106.8 122.0 133						133.5			
基準化細長比 1' -				0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.19	
	断面係数	Ζ	mm ³	2304									
辺	塑性断面係数	Z_p	mm ³	3456									
方	全塑性モーメント	M_p	kN • mm	1811									
向	最大モーメント	M _u	kN • mm	2001									
	降伏モーメント	M_y	kN • mm	1207									
	断面係数	Ζ	mm ³	1629									
対	塑性断面係数	Z_p	mm ³	3258									
角方向	全塑性モーメント	M_p	kN • mm	1707									
	最大モーメント	M _u	kN • mm	1887									
	降伏モーメント	M_y	kN • mm	854									

表 I-1 試験体概要

Nonlinear Buckling of Bending Columns (Part IX : Additional Experiment)

3 実験結果

(I)軸方向の荷重 - 変形関係(座屈後の挙動)

実験に用いた試験機のセットアップ,載荷方法および 計測方法は,前報までと同様のため,ここでは説明を割 愛する。試験体は,幅24mm×高さ24mm×深さ75mmの穴あ け加工が施された治具にはめ込み,両端固定となるよう に取り付けて実験を行った。

実験により得られた各試験体の軸方向の荷重 - 変形関 係を図 I-1 に示す。ここで、軸方向変形 δ,は、試験機の各 所に取り付けた変位計の値を基に、試験体のみの変形量 を算定した結果を用いている。なお、各試験体3本ずつの 実験から得られた座屈荷重および荷重 - 変形関係には, ばらつきが少なく, 試験体毎にほぼ同一の結果が得られ たため、ここでは各試験体の1体目(No.1)の結果を示し ている。座屈後(最大荷重到達後)の挙動について見て みると, 試験体 24A ならびに試験体 24G~24I は座屈後も 荷重と変形が連続的に推移している。一方,試験体 24B~ 24F は座屈後に荷重が大きく低下し、軸方向変形も大きく 進む非連続的な挙動を示している。座屈後の挙動は、部 材長さの短い方から順に、連続(安定) - 非連続(不安 定) - 連続(安定)の3つの領域に分けることができ、こ れは、断面寸法の異なる前報までの実験結果にも同様の 傾向が見られる。ただし、3 つの領域について基準化細長 比を基準に比較してみると、不安定となる領域は、14× 14mm 試験体では 14D (A'=0.92) となり (表 F-2), 19× 19mm 試験体では 19C~19E (A'=0.75~1.25) となっている (表 E-1)。今回実施した 24×24mm 試験体では 24B~24F (A=0.50~1.50) となっていることから、断面寸法が大 きい試験体で,不安定な挙動を示す領域が広いという傾 向が見られた。

座屈後の荷重の推移を見ると, 試験体 24A・24H・24I は, 低下の割合が緩やかであることが分かる。これは, 前報 の14×14mm 試験体 14A・14H・14I および 19×19mm 試験体 19A・19H・19I でも同様の結果が得られており(図 F-2 お よび図 E-2), 基準化細長比の小さい試験体と大きい試験 体で, 座屈後における荷重の低下の割合が緩やかになる 傾向がある。また, これについては断面寸法の大きさに よる違いは見られなかった。

*Ayano Miyaki, **Satoshi Suzuki, ***Isao Nishimura

(Ⅱ)座屈の方向

表 I-2には、実験により得られた座屈荷重および座屈の 方向を整理して示している。座屈後の変形方向について 見ると、試験体 24A・24B が辺方向、その他の試験体では 対角方向に座屈する結果となった。前報の 14×14mm 試験 体では 14A・14B、19×19mm 試験体では 19A・19B が辺方向 への座屈であり(ただし、14B は 3 本中 1 本が対角方向へ の座屈)、その他は対角方向への座屈となっている(表 F-2 および表 E-1)。したがって、座屈の方向については、断 面寸法の大きさによる違いは見られなかった。

4 実験結果と解析結果の比較(座屈荷重)

既報(その 2)で求めた座屈荷重の理論式(B17)と実 験結果の比較を行った。比較結果を座屈応力度 - 基準化 細長比関係として図 I-2 に示す。ここで、理論式(B17) を見ると、座屈荷重は断面係数の影響を受けることが予 想されており、辺方向および対角方向の座屈荷重がそれ ぞれ式(C11)および式(C12)に示されている。また、 断面係数 Z を塑性断面係数 Z_p に置き換えた場合が座屈荷 重の上界を与えることになり、結果として図 I-2 に示す 4 つの解析値が得られる。なお、図中には 14×14mm 試験体 および 19×19mm 試験体の結果も併せて示している。

実験結果と解析値を比較すると、試験体 24A は辺方向に 座屈した試験体であり、実験値が辺方向の解析値を大き く下回る結果となった。また、対角方向に座屈した試験 体のうち 24C・24D・24E は、実験値が解析値を上回る結果 となった。その他の試験体については、解析値の上界と 下界の範囲に実験値が分散する結果となった。前報まで に示した 14×14mm 試験体と 19×19mm 試験体では、座屈荷 重について概ね同様の考察結果が得られており、断面の 大きさによる違いは見られなかったが、24×24mm 試験体 では、これまでの傾向と異なり、24C~24E の 3 つの試験 体で解析値よりも実験値が大きくなる結果が得られた。

次報(その10)では、今回の実験結果と前報までの実 験結果を併せて、軸方向の荷重-変形関係について、実 験結果と理論予想を比較する。

試験体名	, 1	24A	24B	24C	24D	24E	24F	24G	24H	24I
試験体本	3									
座屈荷重N _{cr} (kN)	最大	271.2	244.1	238.5	222.1	165.4	127.4	91.8	71.4	<u>60.1</u>
	最小	2 <mark>65</mark> .8	240.4	235.3	213.1	162.9	123.4	91.0	71.0	58.8
	平均	268.3	242.5	236.6	216.7	163.9	125.0	91.4	71.2	59.2
座屈応力度σ _{cr} (N/mm ²)		466	421	411	376	284	217	159	124	103
σ_{cr}/σ_{y}		0.89	0.80	0.78	0.72	0.54	0.41	0.30	0.24	0.20
座屈後举動		安定	不安定安定							
座屈の方向		÷	辺対角							

表 I-2 座屈荷重と座屈後挙動

* 愛知工業大学大学院 工学研究科博士前期課程
** 愛知工業大学 工学部 建築学科 講師
*** 東京都市大学 工学部 建築学科 教授

* Graduate Student of Eng., Aichi Institute of Technology ** Lect., Dept. of Architecture, Aichi Institute of Technology ***Prof., Dept. of Architecture, Tokyo City University