中心圧縮柱の非線形座屈に関する研究

(その6:断面寸法の異なる試験体を用いた実験)

正会員	〇宮木	彩乃*	鈴木	敏志**
正会員	西村	功***		

座屈荷重	幾何学的非線形	材料非線形
静的載荷実験	正方形断面	

1 はじめに

前報(その4・5)に示した正方形断面鋼材を用いた座 屈実験について、断面寸法が座屈荷重および座屈後挙動 に与える影響を確認する目的で、追加の実験を行った。

本報では,試験体の概要および主な実験結果について 述べる。なお,前報までと同様に(その 6)では式や図表 に記号Fを付す。

2 試験体概要

試験体の寸法および断面性能を表 F-1 に示す。断面寸法 は、前報よりも小さい 14×14mm で、規格サイズの材料の 中から試験機の載荷能力(圧縮力 500kN)などを考慮して 選定した。試験体の断面係数Zおよび断面2次モーメント Iは,前回の19×19mm 試験体と比較して3分の1程度の値 となる。部材長さLは,前報の細長比Aと近い値になるよ うに設定した。なお、実験では試験体の両端 60mm を治具 にはめ込むため、製作した試験体の長さは、部材長さLに 120mm を加えた値となる。試験体名は、前報と同様に細長 比Aの値が小さい方から順にA, B, C, D, E, F, G, H, Iとし, 前 回の19×19mm 試験体と区別するために,頭に14を付けて 表記する(例:14A)。また、ここでは前回の試験体には 19 を付けて表記する。試験体本数は、結果のばらつきを 確認するために各種類3本とした。試験体の材料は,前報 と同様の SS400 (ミカギ四角棒)であり、材料試験からヤ ング係数 E=2.03×10⁵N/mm²,降伏応力度 o_v=520 N/mm²,引 張応力度 σ_u=596 N/mm²が得られている。

試験体名			14A	14B	14C	14D	14E	14F	14G	14H	14I		
	部材長さ	L	nm	115	230	345	460	570	685	800	915	1030	
	幅	14											
厚さ H mm					14								
断面積 A mm ²					196								
断面2次モーメント I mm ⁴				3201									
断面2次半径 <i>i</i> mm								4.04					
	細長比	Л	-	14.2	28.5	42.7	56.9	70.5	84.7	99.0	113.2	127.4	
基準化細長比 1/ -			0.23	0.46	0.69	0.92	1.14	1.37	1.59	1.82	2.05		
	断面係数	Ζ	mm ³	457									
iЛ	塑性断面係数	Z_p	mm ³	686									
方	全塑性モーメント	M_p	kN • mm	357									
向	最大モーメント	M_u	kN • mm	409									
	降伏モーメント	M_y	kN•mm	238									
	断面係数	Ζ	mm ³	323									
対	塑性断面係数	Z_p	num ³	647									
角古	全塑性モーメント	M_p	kN • mm	336									
向	最大モーメント	M_u	kN • mm	385									
	降伏モーメント	M_y	kN • mm					168					

表 F-1 試験体概要

Nonlinear Buckling of Bending Columns (Part VI : Additional Experiment)

3 実験結果

(I)軸方向の荷重 - 変形関係(座屈後の挙動)

実験に用いた試験機のセットアップを図F-1に示す。なお、載荷方法および計測方法は、前報と同様のため、ここでは説明を割愛する。試験体は、幅 14mm×高さ 14mm× 深さ 60mm の穴が開けられた両端部の治具にはめ込み、両端固定となるように取り付けて実験を行った。

図 F-2 は、実験より得られた各試験体の軸方向の荷重-変形関係である。ここで、軸方向変形 δ,は、試験機の各所 に取り付けた変位計の値を基に,試験体のみの変形量を 算定した結果を用いている。座屈後(最大荷重到達後) の挙動に注目してみると、試験体 14A~14C ならびに試験 体 14E~14I は、座屈後も連続的に荷重と変形が推移して いる (図 F-2 (a) · (c))。それに対して, 試験体 14D は, 前述の試験体に比べると座屈後に荷重が大きく低下し, かつ軸方向変形も大きく進む非連続な挙動を示している (図 F-2 (b))。前報で,試験体の細長比を基準に座屈後 の挙動を見ると、連続(安定) - 非連続(不安定) - 連 続(安定)の3つの領域に分けられるという結果が得られ ているが、今回も同様に3つの領域に分けられる結果とな った。なお、前報で非連続な挙動を示した試験体 19C・ 19D・19E では、座屈後、急激に荷重が低下していたのに 対し、今回の試験体14Dでは、前報に比べると大幅な荷重 の低下は見られなかった。

次に,座屈後の荷重の推移を見ると,試験体 14A・ 14H・14I は,低下の割合が緩やかであることが分かる。 また,前報の試験体 19A および試験体 19I でも同様の傾向 が見られ,基準化細長比が小さい試験体および大きい試 験体では,低下の割合が緩やかになる傾向がある。

ここでは,各試験体の No.1 の結果を示したが,3 本ず つ実施した実験の結果に,ばらつきは少なく,形状毎に ほぼ同一の結果が得られている。

^{*}Ayano Miyaki, **Satoshi Suzuki, ***Isao Nishimura

(Ⅱ)座屈の方向

各試験体の実験結果を表 F-2 に示す。また、座屈時から 軸方向に 30mm 変形した時の試験体を写真 F-1 に示す。な お,紙面の都合上,試験体 14A・14C・14F について示して いるが、前述の座屈後挙動と対応させると、試験体 14A・ 14C・14F ともに連続な挙動を示した試験体である。座屈 後の変形方向は、試験体 14A は辺方向、試験体 14C および 試験体 14F は対角方向となった。同様に、試験体 14D・ 14E・14G・14H・14Iは、対角方向となった。試験体14Bに 関しては、辺方向(No.1・No.2)および対角方向(No.3) の両方が混在する結果となったため、表 F-2 には混在と記 している。対角方向に変形した試験体は、多少のばらつ きはあるが、おおよそ45°方向に変形した。

工学研究科博士前期課程 愛知工業大学大学院 ** 愛知工業大学 工学部 建築学科 講師 ***東京都市大学 工学部 建築学科 教授

前報 19×19mm 試験体の結果を見ると、試験体 19A およ び試験体 19B では辺方向,その他の試験体では対角方向と いう結果が得られている。したがって断面寸法によらず, 基準化細長比が小さい試験体では、辺方向に座屈する結 果が得られている。また、試験体 14B の結果には辺方向と 対角方向が混在しており、試験体 14B (A'=0.46) が座屈 の方向が変わる境界であったと推測できる。

4 まとめ

断面寸法を19×19mmから14×14mmに変更し、中心圧縮 の座屈実験を行った。次報(その7)では、得られた実験 結果と既報(その1~3)に示す理論予想を比較し,座屈 モデルの妥当性を検証する。

表 F-2 座屈荷重と座屈後挙動

試験体名	, ,	14A	14B	14C	14D	14E	14F	14G	14H	14I
試験体本					3					
座屈荷重N _{cr} (kN)	最大	92.3	79.6	70.5	62.5	48.9	39.9	30.8	24.6	20.3
	最小	91.2	76.9	68.2	60.5	48.0	37.9	29.8	23.4	19.9
	平均	91.8	78.2	69.2	61.3	48.5	38.7	30.2	23.8	20.1
座屈応力度 $\sigma_{cr}(N/mm^2)$		469	399	353	313	247	197	154	121	103
σ_{cr}/σ_y		0.90	0.77	0.68	0.60	0.48	0.38	0.30	0.23	0.20
座屈後挙動			安定	不安定 安定						
座屈の方	辺方向	混在	対角方向							

(a) 試験体 14A No. 3

(b) 試験体 14C No. 3

(c) 試験体 14F No. 3 写真 F-1 座屈後の変形状態(左:上面 右:側面)

* Graduate Student of Eng., Aichi Institute of Technology

** Lect., Dept. of Architecture, Aichi Institute of Technology

***Prof., Dept. of Architecture, Tokyo City University