On Higher Differentials in Formal Power Series Rings

Atsushi ARAKI*

形式的ベキ級数環における高階微分について

荒 木 淳

Abstract. In [1], the concept of higher differentials in a commutative ring (by means of universal higher derivation) was introduced and it was shown that if a geometric regular local ring R is regular, then the submodule $A^n(R)$ of A(R) generated by elements of degree n over R is R-free.

In this paper, we shall consider the case where R is a formal power series ring. When R is a residue class ring $k[[X_1, \dots, X_s]]_q / pk[[X_1, \dots, X_s]]_q$ where p, q are prime ideals in $k[[X_1, \dots, X_s]]$ such that $p \subset q$, we have the following result under some conditions: The submodule $A^n(R)$ of A(R) generated by elements of degree n over R is R-free if R is regular.

1. Introduction. In the present paper, all rings are commutative rings with identity elements. A ring homomorphism will always mean a ring homomorphism which sends identity element to identity element.

Let R be a ring. By an R-module we understand an R-module in which l_R , the identity element of R, operates as the identity operator.

A ring A will be called an R-algebra if R is an operator domain of A and there exist a ring homomorphism f from R into A such that the operation on A of an element $r \in R$ is given by the rule $r \cdot a = f(r)a$ for $a \in A$. f is called the structural homomorphism. Let P be a ring and let R be a P-algebra. A higher P-derivation from R into A is a family $\{d^n\}n \ge 0$ of P-linear mappings from R into an R-algebra A such that

(i) $d^0a = a \cdot l_A$ for every $a \in R$,

(ii) $d^n(ab) = \sum_{\substack{i \leq n \\ 0 \leq i \leq n}} d^i a \cdot d^{n-i} b$ for every $a, b \in \mathbb{R}$ and $n \geq 1$.

Let A be an R-algebra and let $\{d^n\}n\geq 0$ be a higher P-derivation from R into A. We call A (together with $\{d^n\}n\geq 0$) a higher differential algebra of R over P, when the following conditions are satisfied:

(1) As an R-algebra, A is generated by the elements $d^n a$ $(a \in \mathbb{R}, n \geq 0)$ over R.

(2) For any higher P-derivation $\{\delta^n\}_n \ge 0$ from R into an R-algebra N, there exists an R-algebra homomorphism φ from A into N which satisfies

$$\delta^n = \varphi d^n$$
 for $n \ge 0$.

In Proposition 1 of [1], it was already shown that, for any ring P and P-algebra R, there exists a higher differential algebra of R over P and it is uniquely determined up to an R-algebra isomorphism.

荒 木 淳

From now on, we shall denote by $A_P(R)$ a higher differential algebra of R over P and by $\{d_{R,P}^n\}_n \ge 0$ the associated higher P-derivation from R into $A_P(R)$.

Denote by $A_P^n(R)$ the R-submodule of $A_P(R)$ generated by the elements

$$(d_{R,P}^{h_1}a_1)^{\gamma_1} \cdot \cdot \cdot (d_{R,P}^{h_s}a_s)^{\gamma_s}$$

over R where a_i 's run through R and h_i 's and r_i 's are non negative integers such that $h_1r_1 + \cdots + h_sr_s = n$ for some $s \ge 1$.

Denoting by Z the ring of rational integers, any ring R can be seen as a Z-algebra with the structural homomorphism $g: Z \longrightarrow R$ defined by $g(m) = m \cdot 1_R$ $(m \in Z)$. We shall write $A_Z(R)$ simply A(R).

2. The higher differential algebra of a formal power series ring.

PROPOSITION. Let $R = P[[X_{\lambda}]]_{i \in A}$ be a formal power series ring in indeterminates X_{λ} ($\lambda \in \Lambda$) over P. Then, introducing new indeterminates $X_{\lambda,n}$ ($\lambda \in \Lambda$, $n \ge 1$), the higher differential algebra, of R over P is given by the polynomial ring $A = R[[X_{\lambda,n}]]_{i \in \Lambda}, n \ge 1$ over R and associated higher P-derivation $\{d^n\}$ is given by

$$d^n X_{\lambda} = X_{\lambda,n}$$
 for $\lambda \in \Lambda$ and $n \ge 0$

where $X_{\lambda,0}$ stands for X_{λ} .

PROOF. We can obtain this proof in almost the same way as Proposition 7 in [1]. Therefore we omit the proof.

COROLLARY. If R is formal power series ring over P, then $A_P^n(R)$ is a free R-module for every $n \ge 0$.

Let k be a field of characteristic p and denote by k_0 the prime field contained in k. Let B be the formal power series ring $k[[X_1, \dots, X_s]]$ in s indeterminates over k, let $\mathfrak{p} \subset \mathfrak{q}$ be prime ideals of B and set $S=B_{\mathfrak{q}}$.

Let R be a residue class ring of S with respect to pS.

LEMMA 1. With the notations as above, if R is regular and k is finitely generated over k_0 , then $A^n(R)$ is R-free for every $n \ge 0$, Furthermore, for p > 0. if R is regular and k finitely generated over a field k^q for some $q = p^m (m > 0)$ then $A^n(R)$ is R-free for every n < q.

PROOF. Denoting by \Re the maximal ideal qS/pS of R, we shall show that

$$A^{n}(R)/\mathfrak{R}^{r}A^{n}(R)\cong A^{n}(R/\mathfrak{R}^{s}) \bigotimes_{R} (R/\mathfrak{R}^{r})$$

for every $r \ge 1$ and $s \ge n + r$.

In fact, by Proposition 3 in [1],

$$A^{n}(R/\Re^{s}) = A^{n}(R) / V_{n}^{(s)}$$

$$\sum_{n \neq i} A^{n}(R) A^{n-i}\Re^{s} \qquad \text{with} \quad A^{n-i}$$

where $V_n^{(s)} = \sum_{\substack{0 \leq i \leq n}} A^i(R) d^{n-i} \mathfrak{N}^s$ with $d^{n-i} = d_{R,Z}^{n-i}$.

It is clear that for $h \ge n$, $d^n \mathfrak{N}^h \subset \mathfrak{N}^{h-n} A^n(R)$ from the proof of Proposition 7 in [1]. Hence $V_n^{(s)} \subset \mathfrak{N}^r A^n(R)$ for every $s \ge n + r$. Therefore we have

Therefore we have

$$A^{n}(R/\mathfrak{N}^{s}) \bigotimes_{R} (R/\mathfrak{N}^{s}) \cong A^{n}(R/\mathfrak{N}^{s})/\mathfrak{N}^{s}A^{n}(R/\mathfrak{N}^{s})$$
$$\cong (A^{n}(R)/V_{n}^{(s)})/(\mathfrak{N}^{s}A^{n}(R)/V_{n}^{(s)})$$
$$\cong A^{n}(R)/\mathfrak{N}^{s}A^{n}(R).$$

Since R is a regular local ring containing k, the completion \widehat{R} of R contains a field $K \supset k_0$ $(K \cong R/\mathfrak{N})$ and $\widehat{R} \cong K[[Y]]$ where K[[Y]] is the ring of formal power series in Y_1, \dots, Y_l over K.

Therefore

$$\widehat{R}/\widehat{\mathfrak{N}}^r \cong R/\mathfrak{N}^r \cong K[[Y]]/(Y)^r \quad r \ge 1.$$

Hence, for every $s \ge n+r$, we have

$$\begin{split} A^{n}(R) / \mathfrak{N}^{r} A^{n}(R) &\cong A^{n}(K[[Y]] / (Y)^{s}) \underset{K[[Y]]}{\otimes} (K[[Y]] / (Y)^{r}) \\ &\cong A^{n}(K[[Y]]) / (Y)^{r} A^{n}(K[[Y]]) \\ &\cong A^{n}(K[[Y]]) \underset{K[[Y]]}{\otimes} K[[Y]] / A^{n}(K[[Y]]) \underset{K[[Y]]}{\otimes} (Y)^{r} \\ &\cong A^{n}(K[[Y]]) \underset{K[[Y]]}{\otimes} (K[[Y]] / (Y)^{r}). \end{split}$$

By Proposition 5 in [1], we have

$$A^n(K[[Y]]) \ = \ A^n(K \bigotimes_{k_0} k_0[[Y]]) \ = \bigoplus_{0 \le i \le n} A^i(K) \ \bigotimes_{k_0} \ A^{n-i}(k_0[[Y]]) \, .$$

Since, by the Corollary of Proposition. $A^n(K[[Y]])$ is clearly a free K[[Y]]-module for every $n \ge 0$, $A^n(K[[Y]]) \bigotimes_{K \equiv Y \equiv} (K[[Y]]/(Y)^r)$ is a free $K[[Y]]/(Y)^r$ -module for every $n \ge 0$ and $r \ge 1$. This implies that $A^n(R)/\Re^r A^n(R)$ is R/\Re^r -free for every $n \ge 0$ and $r \ge 1$. Since k is finitely generated over k_0 and R is finitely generated over k, $A^n(R)$ is a finite R-module for every $n \ge 0$.

Hence, our assertion is obtained by Lemma 4 in [1].

If p>0 and k is finitely generated over k^q , then by Proposition 4 and Proposition 10 in [1], we have

$$A^n(R) = A^n{}_k{}^q(R)$$

for n < q and $A^{n}_{k}{}^{q}(R)$ is a finite R-module. Hence the assertion follows from Lemma 4 in [1].

Let $\mathfrak{p}=\mathfrak{p}_0\subset\mathfrak{p}_1\subset\cdots\subset\mathfrak{p}_t=\mathfrak{q}$ be a maximal chain of prime ideals between \mathfrak{p} and \mathfrak{q} in B. Let k' be a field cotaining all the coefficients of formal power series $f_{i\nu_i}(X)$ $(i=0,1,\cdots,t)$, where $\{f_{i\nu_i}(X)\}_{\nu_i\in \mathcal{A}}$ is a base for \mathfrak{p}_i and let $B'=k'[[X_1,\cdots,X_s]], \ \mathfrak{p}_i'=\mathfrak{p}_i\cap B' \ (i=0,1,\cdots,t), \ S'=B'\mathfrak{q}'$ and $R'=S'/\mathfrak{p}'S'$.

LEMMA 2. Notations being as above, we assume that B is an integral extension of B'. If R is regular, then R' is regular.

PROOF. First, we show that dim $R = \dim R'$. Since B is integral over B', we have height $q = \text{height } q \cap B'$ and height $p = \text{height } p \cap B'$. Then we get

dim $R = \dim S/\mathfrak{p}S = \text{height } \mathfrak{q} - \text{height } \mathfrak{p} = t$

= height $q \cap B'$ - height $p \cap B'$ = dim S'/p'S' = dim R'.

Let g_1, \dots, g_t be maximal set of generators of maximal ideal \mathfrak{N} of R. Since \mathfrak{q} is the ideal with a base consisting of formal power series in $k'[[X_1,\dots,X_s]]$, we can assume that $g_1, \dots, g_t \in \mathfrak{N}'$ and $(g_1, \dots, g_t) R' = \mathfrak{N}'$ where \mathfrak{N}' is a maximal ideal of R'. Thus R' is regular.

THEOREM. Notations and assumptions being as in Lemma 2. We assume that k' is finitely generated over k^q in the case ch(k) > 0 and over k_0 in the case ch(k) = 0. If the local ring R is regular, then $A^n(R)$ is a free R-module for every $n \ge 0$.

PROOF. Now, we consider the p>0 and the case p=0 separately.

In the case p>0. Let Γ be a p-base of k and Δ a finite subset of Γ such that $k' = k^q(\Delta)$ contains all the coefficients of formal power series of a base for \mathfrak{p} ; $(i=0,1,\cdots,t)$, where $q=p^m$ $(m\geq 1)$. We put $k''=k^q(\Gamma-\Delta)$.

First we shall show that $k'' \bigotimes_{k^q} R' \cong R$. Denoting by (x_1, \dots, x_s) the residue classes of (X_1, \dots, X_s) modulo \mathfrak{p}' , we have

$$Q(R') = k'((x_1, \cdots, x_s))$$

where Q(R') and $k'((x_1, \dots, x_s))$ are the quotient field of R' and $k''[[x_1, \dots, x_s]]$ respectively. Since, by Lemma 2 in [1], Γ is q-independent over k^q , k' and k'' are linearly disjoint over k^q . By (22.3) in [3], k = k'k'' and $k'((x_1, \dots, x_s))$ are linearly disjoint over k'. Hence k'' and $k'((x_1, \dots, x_s))$ are linearly disjoint over k^q , thus we have

$$k'' \bigotimes_{k^q} R' \cong k'' R' \subset R$$

On the other hand, let $\overline{a}/\overline{b}$ ($\overline{a} \in B/\mathfrak{p}$, $\overline{b} \in B/\mathfrak{p}-\mathfrak{q}/\mathfrak{p}$) be an element of R. Then we can write $\overline{a} = \Sigma \alpha_i \overline{a_i}, \qquad \overline{b} = \Sigma \beta_j \overline{b_j}$

with $\overline{a_i} \in B'/\mathfrak{p}', \ \overline{b_j} \notin \mathfrak{q}'/\mathfrak{p}'$ and $\alpha_i, \ \beta_j \in k''$. Since $\overline{b^q} = \Sigma \beta_j^q \overline{b_j}^q \in B'/\mathfrak{p}' - \mathfrak{q}'/\mathfrak{p}'$, we have

$$\overline{a}/\overline{b} = \overline{a} \ \overline{b}^{q-1}/\overline{b^{q}} \in k''(B'/\mathfrak{p'})_{\mathfrak{q'}}/\mathfrak{p'} = k''R'.$$

Hence $k'' \bigotimes_{k'} R' \cong R$. Next, we shall show $A^n(R)$ is *R*-free for n < q. In fact, by Proposition 5 in $\lceil 1 \rceil$, we have

$$A^{n}(R) = A^{n}{}_{k^{q}}(R) = \bigoplus_{\substack{0 \leq i \leq n}} \{A^{i}{}_{k^{q}}(k'') \bigotimes_{\substack{k^{q}}} A^{n-i}{}_{k^{q}}(R')\}$$

in which each $A^{i}_{kq}(k'') = A^{i}(k'')$ is k''-free and each $A^{n-i}_{kq}(R') = A^{n-i}(R')$ is R'-free by Lemma 1. Hence each summand $A^{i}(k'') \otimes A^{n-i}(R')$ is R-free. Therefore $A^{n}(R)$ is R-free for n < q. Thus $A^{n}(R)$ is R-free for every $n \ge 0$.

In the case p=0. Since R is regular, by Lemma 2, R' is regular.

Hence, by Lemma 1, $A^n(R')$ is R'-free for every $n \ge 0$. Let Λ be the trancendency base of k over k' and let $\tilde{k} = k_0(\Lambda)$. Since k' and \tilde{k} are linearly disjoint over k_0 , \tilde{k} and $k'((x_1, \dots, x_s))$ are linearly disjoint over k_0 by an argument as in the case p>0. Hence we have

$$R \cong k \bigotimes_{k_0} R'$$

where $\widetilde{R} = \widetilde{k} R'$. Therefore, by Proposition 5 in [1], we have

$$A^{n}(R) = \bigoplus_{\substack{\mathbf{0} \leq i \leq n}} \{A^{i}(k) \bigotimes_{k_{\mathbf{0}}} A^{n-i}(R')\}$$

proving that $A^n(\widetilde{R})$ is \widetilde{R} -free for every $n \ge 0$. We shall now show that

$$A(R) = R \bigotimes_{\widetilde{R}} A(\widetilde{R})$$

which implies that $A^n(R)$ is R-free for $n \ge 0$. Let us put $R^* = \widetilde{R}[k]$.

First, if k is finite algebraic over $k'' = k'\widetilde{k}$, then $k = k''(\alpha)$ for some $\alpha \in k$ and we have $R^* = \widetilde{R}[\alpha]$. Hence, by Lemma 1 in [1], we have

$$A(R^*) = R^* \bigotimes_{\widetilde{R}} A(\widetilde{R}).$$

Next, if k is not finite over k'', there exists a family $\{k_i\}$ of finite algebraic extensions over k'' and $k = \bigcup k_i$. As is shown above, $A(R_i^*) = R_i^* \bigotimes_{\widetilde{R}} A(\widetilde{R})$ and the associated higher k_0 -derivation $\{d_i^n\}_n \ge 0$ from R_i^* into $R_i^* \bigotimes_{\widetilde{R}} A(\widetilde{R})$ is uniquely determined by $\{d_{\widetilde{R},k_n}^n\}_n \ge 0$ and the following diagram is commutative,

$$\widetilde{R} \xrightarrow{g_{\lambda}^{*}} R_{\lambda}^{*} \xrightarrow{h_{\mu\lambda}^{*}} R_{\mu\lambda}^{*} \xrightarrow{k_{\mu}^{*}} R_{\mu}^{*}$$

$$\downarrow d_{\widetilde{R},k_{0}}^{n} \qquad \downarrow d_{\lambda}^{n} \qquad \downarrow d_{\mu}^{n}$$

$$A(\widetilde{R}) \xrightarrow{u_{\mu}} R_{\lambda}^{*} \bigotimes_{\widetilde{R}} A(\widetilde{R}) \xrightarrow{h_{\mu\lambda}^{*} \otimes 1} R_{\mu}^{*} \bigotimes_{\widetilde{R}} A(\widetilde{R})$$

where $u_{\lambda}(\omega) = 1 \otimes \omega$ and g^* is the canonical injection $\widetilde{R} \longrightarrow R_{\lambda}^*$. Accordingly we have a direct system $\{R_{\lambda}^* \otimes A(\widetilde{R}), h^*_{\mu\lambda} \otimes 1\}$ and

$$A(R^*) = \varinjlim_{\widetilde{R}} R_{i} \otimes A(\widetilde{R}), \cong R^* \otimes_{\widetilde{R}} A(\widetilde{R}).$$

Since R^* is a subring of R containing B. R is a quotient ring of R^* . Hence, by Proposition 8 in [1], we have

$$A(R) = R \bigotimes_{R*} A(R_{\lambda}) \cong R \bigotimes_{\widetilde{R}} A(\widetilde{R}).$$

This completes the proof.

REFERENCES

- [1] Y. Kawahara and Y. Yokoyama: On higher differentials in commutative rings. TRU Math. Vol. 2, 12-30 (1966).
- [2] Y. Nakai: On the theory of differentials in commutative rings. J. Math. Soc. Japan, Vol. 13, No. 1, 63-84 (1961).
- [3] S. S. Abhyankar: Local analytic geometry. Academic press, (1964).
- [4] O. Zariski and P. Samuel: Commutative algebra Vol. II, Princeton-Toronto New York-London, (1960).
- [5] M. Nagata: Local rings, Interscience Tracts in pure and applied Math. (1962).