Planar open Riemann surfaces and holomorphic approximation

単葉型開リーマン面と正則近似

Makoto Abe[†], Gou Nakamura^{††}

阿部 誠†, 中村 豪 ††

Abstract An open Riemann surface *R* is planar if and only if for every domain *G* in *R* the condition that *G* satisfies the strong disk property in *R* implies the condition that *G* is holomorphically Runge in *R*.

1. Introduction

First, we prove that for every open Riemann surface *R* such that $1 \le g(R) \le +\infty$ there exists a relatively compact annular domain *G* in *R* such that *G* is not holomorphically Runge in *R* whereas *G* satisfies the strong disk property in *R* (see Theorem 3.1). As a corollary, an open Riemann surface *R* is planar if and only if for every domain *G* in *R* the condition that *G* satisfies the strong disk property in *R* implies the condition that *G* is holomorphically Runge in *R*, which answers Abe-Nakamura [5, Problem 3.5] (see Corollary 3.2).

Next, we prove that a domain *G* in an arbitrary open Riemann surface *R* satisfies the strong disk property in *R* if and only if the canonical homomorphism $\pi_1(G) \rightarrow \pi_1(R)$ is injective (see Theorem 4.2), the proof of which is based on the argument in the proof of Abe [2, Theorem 5].

Alternative proofs for both Corollary 3.2 and Theorem 4.2 based mainly on the theory of functions in one complex variable are also presented in the paper [6].

2. Preliminaries

Complex manifolds are always supposed to be second countable. We denote by $\mathcal{O}(R)$ the set of holomorphic functions on *R*. A complex manifold *R* is said to be *Stein* if the following two conditions are satisfied:

- *R* is *holomorphically separable*, that is, for any two points $p, q \in R$, $p \neq q$, there exists $f \in \mathcal{O}(R)$ such that $f(p) \neq f(q)$.
- *R* is *holomorphically convex*, that is, for every compact set *K* of *R*, the *holomorphically convex hull* \hat{K}_R of *K* in *X* is also compact, where

$$\hat{K}_R := \left\{ x \in R \mid \left| f(x) \right| \le \left\| f \right\|_K \text{ for every } f \in \mathcal{O}(R) \right\}.$$

An open set *D* of a complex manifold *R* is said to be (*holomorphically*) *Runge* in *R* if for every $f \in \mathcal{O}(D)$, for every compact set *K* of *D*, and for every $\varepsilon > 0$, there exists $h \in \mathcal{O}(R)$ such that $||f - h||_{K} < \varepsilon$.

A connected complex manifold of dimension 1 is said to be a *Riemann surface* and a noncompact Riemann surface is said to be an *open Riemann surface*. By Behnke-Stein [7], every open Riemann surface is Stein. We have the following characterizations of a Runge open set of an open Riemann surface, which is also due to Behnke-Stein [7] (see Mihalache [11]).

Theorem 2.1 (Behnke-Stein). *Let R be an open Riemann surface and D an open set of R. Then, the following three conditions are equivalent.*

- (1) D is Runge in R.
- (2) The canonical homomorphism $H_1(D,\mathbb{Z}) \rightarrow H_1(R,\mathbb{Z})$ is injective.
- (3) No connected component of $R \setminus D$ is compact.

[†] School of Integrated Arts and Sciences, Hiroshima University.

^{††} Center for General Education, Aichi Institute of Technology.

Let $\mathbb{U} := \{\zeta \in \mathbb{C} \mid |\zeta| < 1\}$ be the *unit disk* in \mathbb{C} . An open set *D* of a complex manifold *R* is said to satisfy the *strong disk property* in *R* if *D* satisfies the condition that if $\lambda : \overline{\mathbb{U}} \to R$ is a continuous map holomorphic on \mathbb{U} such that $\lambda(\partial \mathbb{U}) \subset D$, then $\lambda(\overline{\mathbb{U}}) \subset D$. As is easily shown, we have the following proposition (see Abe [2, Proposition 1] and Abe-Nakamura [5, Proposition 2.6]).

Proposition 2.2. Let *R* be a Stein manifold and *D* an open set of *R*. If every connected component of *D* is Runge in *R*, then *D* satisfies the strong disk property in *R*.

A connected open set of a complex manifold *R* is said to be a *domain* in *R*. An open Riemann surface *R* is said to be *planar* if *R* is biholomorphic to a domain in \mathbb{C} . If *R* is a planar open Riemann surface, then the converse of Proposition 2.2 is true, that is, we have the following proposition (see Abe-Nakamura [5, Theorem 3.3]).

Proposition 2.3. *Let R be a planar open Riemann surface and D an open set of R. Then, the following two conditions are equivalent.*

- (1) D satisfies the strong disk property in R.
- (2) Every connected component of D is Runge in R.

3. Planar open Riemann surfaces

A domain *G* in a Riemann surface *R* is said to be a *normal domain* in *R* if *G* is relatively compact in *R*, the boundary ∂G of *G* consists of finitely many simple closed analytic paths in *R*, and no connected component of $R \setminus G$ is compact (see Nakai [12, p. 60]). We denote by g(R) the *genus* of a Riemann surface *R*. We refer to Nakai [12, pp.118–119] for the definition of the genus of an open Riemann surface. Then, an open Riemann surface *R* is planar if and only if g(R) = 0.

Theorem 3.1. Let R be an open Riemann surface such that $1 \le g(R) \le +\infty$. Then, there exists a relatively compact annular domain G in R such that G is not Runge in R while G satisfies the strong disk property in R.

Proof. Take a normal domain *S* in *R* such that $1 \le g(S) < +\infty$. Let $\{a_i, b_i\}_{i=1}^g$, where g := g(S), be a canonical homology basis of *S* modulo ∂S (see Nakai [12,

p. 118]). There exist a compact Riemann surface *S*^{*} of genus *g* and an open disk $W = \{|z| < 1\}$, where *z* is a local coordinate of *S*^{*} defined near \overline{W} , such that *S* is a domain in *S*^{*} and $K := S^* \setminus S \subset W$ (see Nakai [12, pp. 187–189]). Then, $H := S \cap W$ and $E := S^* \setminus \overline{W}$ are nonempty domains in *S*. We may further assume that $\{a_i, b_i\}_{i=1}^g \subset E$. Take a number $\rho \in (0, 1)$ such that $K \subset \{|z| < \rho\}$ and let $G := \{\rho < |z| < 1\}$. Since $S \setminus H = S^* \setminus W$ is a compact connected component of $S \setminus G$, the domain *G* is not Runge in *S* by Theorem 2.1 and, therefore, *G* is not Runge either in *R*.

Let $\lambda : \overline{\mathbb{U}} \to R$ be a continuous map holomorphic on \mathbb{U} such that $\lambda(\partial \mathbb{U}) \subset G$. Since *S* is Runge in *R*, we have $\lambda(\overline{\mathbb{U}}) \subset S$ by Proposition 2.2. Suppose that $E \subset \lambda(\mathbb{U})$. Then, the map $\lambda : \mathbb{U} \to S$ is open and all fibers $\lambda^{-1}(x)$, $x \in \lambda(\mathbb{U})$, are discrete in \mathbb{U} . Since we can verify that λ : $\lambda^{-1}(E) \to E$ is proper, the map $\lambda : \lambda^{-1}(E) \to E$ is finite (see Grauert-Remmert [9, p. 175]). It follows that there exists $b \in \mathbb{N}$ such that $\lambda : \lambda^{-1}(E) \to E$ is a *b*-sheeted analytic covering of E (see Grauert-Remmert [9, pp. 135-136]). Let T be a critical locus of this analytic covering. Let $\gamma : I \to E$, where I = [0, 1], be an arbitrary closed path in *E*. Since *T* is a discrete closed set of *E*, the set $\gamma(I) \cap T$ is finite. Therefore, by deforming γ slightly, we have a closed path β : $I \rightarrow E \setminus T$ which is homotopic to γ in *E*. Let $a := \beta(0) = \beta(1)$. Take an arbitrary point $c_0 \in \lambda^{-1}(a)$. Since $\lambda : \lambda^{-1}(E \setminus T) \to E \setminus T$ is an unramified covering of $E \setminus T$, there exists a path $\tilde{\beta}_1 : I \to \lambda^{-1}(E \setminus T)$ such that $\lambda \circ \tilde{\beta}_1 = \beta$ and $\tilde{\beta}_1(0) = c_0$. Let $c_1 := \tilde{\beta}_1(1)$. Then, we have $\lambda(c_1) = \lambda(\tilde{\beta}_1(1)) = \beta(1) = a$. By induction, there exist points $c_1, c_2, \ldots, c_h \in \lambda^{-1}(a)$ and paths $\tilde{\beta}_{\nu}: I \to \lambda^{-1}(E \setminus T)$ such that $\lambda \circ \tilde{\beta}_{\nu} = \beta$, $\tilde{\beta}_{\nu}(0) = c_{\nu-1}$, and $\tilde{\beta}_{\nu}(1) = c_{\nu}$ for every $\nu = 1, 2, ..., b$. Since $\#\lambda^{-1}(a) =$ $b < +\infty$, there exist nonnegative integers k and l such that $0 \le k < l \le b$ and $c := c_k = c_l$. Let $\tilde{\beta} := \tilde{\beta}_{k+1} \cdot \tilde{\beta}_{k+2} \cdot$ $\cdots \tilde{\beta}_l : I \to \lambda^{-1}(E \setminus T)$ be the closed path which joins paths $\tilde{\beta}_{k+1}, \tilde{\beta}_{k+2}, \dots, \tilde{\beta}_l$ successively. Then, we have $\lambda \circ \tilde{\beta} = \beta^m$, where $m := l - k \ge 1$. Since \mathbb{U} is simply connected, there exists a homotopy $\tilde{\eta} : I \times I \to \mathbb{U}$ such that $\tilde{\eta}(0,t) = \tilde{\beta}(t)$ and $\tilde{\eta}(1,t) = \tilde{\eta}(s,0) = \tilde{\eta}(s,1) = c$ for every *s*, $t \in I$. Let $\eta := \lambda \circ \tilde{\eta} : I \times I \rightarrow \lambda(\mathbb{U})$. Then, we have $\eta(0, t) = \beta^{m}(t)$ and $\eta(1, t) = \eta(s, 0) = \eta(s, 1) = a$ for every s, $t \in I$. Therefore, β is homotopic to a constant path in $\lambda(\mathbb{U})$ because $\pi_1(\lambda(\mathbb{U}))$ is torsion free (see Napier-Ramachandran [13, p. 226]). It follows that $[\gamma] = [\beta] = 0$ in $H_1(\overline{S},\mathbb{Z})$, which is a contradiction, for example, for $\gamma := a_1$. Thus, we proved that $E \not\subset \lambda(\mathbb{U})$.

Take an arbitrary $r \in E \setminus \lambda(\mathbb{U})$. Then, $P := S^* \setminus \{r\}$ is a noncompact domain in S^* , $\overline{W} \subset P$, and $P \setminus W = (S^* \setminus W) \setminus \{r\}$ is not compact. We can also verify that $P \setminus W$ is connected. Therefore, W is Runge in P by Theorem 2.1. Since $\lambda(\partial \mathbb{U}) \subset G \subset W$ and $\lambda(\overline{\mathbb{U}}) \subset P$, we have $\lambda(\overline{\mathbb{U}}) \subset W$ by Proposition 2.2. It follows that $\lambda(\overline{\mathbb{U}}) \subset W \cap S = H$. Since the set $H \setminus G = \{|z| \le \rho\} \setminus K$ is connected and noncompact, the domain G is Runge in H by Theorem 2.1. Therefore, we have $\lambda(\overline{\mathbb{U}}) \subset G$ by Proposition 2.2. Thus, we proved that G satisfies the strong disk property in R.

By Proposition 2.3 and by Theorem 3.1, we have the following characterization of a planar open Riemann surface in the class of the open Riemann surfaces.

Corollary 3.2. *Let R be an open Riemann surface. Then, the following two conditions are equivalent.*

- (1) R is planar.
- (2) For every domain G in R, the condition that G satisfies the strong disk property in R implies the condition that G is Runge in R.

4. A topological criterion

An open set *D* of a complex manifold *R* is said to be *meromorphically* $\mathcal{O}(R)$ -*convex* if for every compact set *K* of *D* the set $_{H}K_{R} \cap D$ is also compact, where

 ${}_{H}K_{R} := \left\{ x \in R \mid f(x) \in f(K) \text{ for every } f \in \mathcal{O}(R) \right\}$

is the *meromorphically convex hull* of *K* in *R* (see Hirschowitz [10], Colţoiu [8], Abe–Furushima [4], and Abe [1, 2, 3]). By the proof of Abe [2, Theorem 5], we have the following theorem.

Theorem 4.1. Let *R* be a Stein manifold and *G* a meromorphically $\mathcal{O}(R)$ -convex domain in *R*. Assume that the canonical homomorphism $\pi_1(G) \rightarrow \pi_1(R)$ is injective. Then, *G* satisfies the strong disk property in *R*.

We have the following characterization of the strong disk property for a domain *G* in an arbitrary open Riemann surface *R*.

Theorem 4.2. Let *R* be an open Riemann surface and *G* a domain in *R*. Then, the following two conditions are equivalent.

(1) G satisfies the strong disk property in R.

The canonical homomorphism π₁(G) → π₁(R) is injective.

Proof. (1) \rightarrow (2). Let $\pi : Z \rightarrow R$ be the universal covering of R, where $Z = \mathbb{C}$ or $Z = \mathbb{U}$. Take an arbitrary closed path $\gamma : I \rightarrow G$, where I := [0, 1], which is homotopic to a constant path in R. Let $\tilde{\gamma} : I \rightarrow \pi^{-1}(G)$ be a lifting of γ to $\pi^{-1}(G)$ and E the connected component of $\pi^{-1}(G)$ which contains $\tilde{\gamma}(I)$. Then, we can verify that $\tilde{\gamma}$ is a closed path in E. Since G satisfies the strong disk property in R, the open set $\pi^{-1}(G)$ satisfies the strong disk property in Z. Then, by Proposition 2.3, E is Runge in \mathbb{C} and, therefore, E is simply connected. It follows that there exists a homotopy $\tilde{\eta}$ in E between $\tilde{\gamma}$ and a constant path. Then, $\pi \circ \tilde{\eta}$ is a homotopy in G between γ and a constant path. Thus, we proved that $\pi_1(G) \rightarrow \pi_1(R)$ is injective.

(2) → (1). The assertion is a direct consequence of Theorem 4.1 because every open set of an open Riemann surface *R* is meromorphically $\mathcal{O}(R)$ -convex (see Abe [1, Proposition 16] or Abe [3, Theorem 5.2]).

Remark 4.3. In the case where dim $R \ge 2$, the converse of Theorem 4.1 is not true. Let, for example, $R := \mathbb{C}^2$ and $G := \{(z, w) \in \mathbb{C}^2 \mid |z| < 2, |w| < 2, |zw - 1| < 1/2\}$. Then, *G* is a Runge domain in \mathbb{C}^2 and, therefore, *G* is meromorphically $\mathcal{O}(\mathbb{C}^2)$ -convex. On the other hand, *G* is not simply connected (see Nishino [14, p. 103]).

Acknowledgments. The first author is partially supported by JSPS KAKENHI Grant Number JP17K05301 and the second author is partially supported by JSPS KAKENHI Grant Number JP18K03348.

References

- Abe, M.: Meromorphic approximation theorem in a Stein space. Ann. Mat. Pura Appl. (4) 184, 263–274 (2005)
- [2] Abe, M.: Polynomial convexity and strong disk property. J. Math. Anal. Appl. **321**, 32–36 (2006)
- [3] Abe, M.: Open sets satisfying the strong meromorphic approximation property. Toyama Math. J. 29, 7–23 (2006)
- [4] Abe, M., Furushima, M.: On the meromorphic convexity of normality domains in a Stein manifold. Manuscripta Math. 103, 447–453 (2000)

- [5] Abe, M., Nakamura, G.: Strong disk property for domains in open Riemann surfaces. Filomat **30**, 1711–1716 (2016)
- [6] Abe, M., Nakamura, G., and Shiga, H.: A topological characterization of the strong disk property on open Riemann surfaces. Preprint
- [7] Behnke, H., Stein, K.: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120, 430–461 (1949)
- [8] Colţoiu, M.: On hulls of meromorphy and a class of Stein manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, 405–412 (1999)
- [9] Grauert, H., Remmert, R.: Coherent analytic sheaves, Grundl. Math. Wiss., vol. 265. Springer, Berlin (1984)
- [10] Hirschowitz, A.: Sur l'approximation des hypersurfaces. Ann. Scuola Norm. Sup. Pisa (3) 25, 47– 58 (1971)

- [11] Mihalache, N.: The Runge theorem on 1dimensional Stein spaces. Rev. Roumaine Math. Pures Appl. 33, 601–611 (1988)
- [12] 中井三留(Nakai, M.): リーマン面の理論(Theory of Riemann surfaces). 森北出版(Morikita Shuppan),東京(Tokyo)(1980)
- [13] Napier, T., Ramachandran, M.: An introduction to Riemann surfaces. Birkhäuser/Springer, New York (2011)
- [14] Nishino, T.: Function theory in several complex variables, Translations of Mathematical Monographs, vol. 193. Amer. Math. Soc., Providence (2001). Translated by Levenberg, N. and Yamaguchi, H.

(受理 平成31年3月9日)