(その4:実験概要)

正会員	〇庄司	夏海*	鈴木	敏志**
正会員	西村	功***		

座屈荷重	幾何学的非線形	材料非線形
静的載荷実験	正方形断面	

1 はじめに

前報(その1~3)^{1)~3)}に示した理論の妥当性を検証する目的で,正方形断面鋼材を用いた中心圧縮の座屈実験を行った。実験では主に,①座屈荷重,②座屈後の荷重-変形関係,③部材の変形状態を計測した。本報では,試験体および実験方法について述べる。なお,前報までと同様に,(その4)では式や図表に記号Dを付す。

2 試験体寸法

本実験で計画した試験体の寸法および断面性能を表 D-1 に示す。試験体の断面形状は,試験体の座屈荷重と試験 機の載荷能力(圧縮力 500kN)を考慮して一辺が 19mm の 正方形断面とした。部材長さ L は,150mm から 1350mm の 範囲で,細長比 Λ (本報では,既報に記載の基本部材長 $\lambda(k)$ と区別するため, Λ と表記する)が等間隔になるよう に設定した。試験体名は細長比 Λ が小さい方から順に A, B, C, D, E, F, G, H, I とし,試験体の本数は,H が 2本,G が 3本,その他は各 6本とした。

図 D-1 には、各試験体の座屈応力度 σ_{cr} と基準化した細 長比 Λ 'の関係を示す。ここで、座屈応力度の値は、細長 比が限界細長比以下の試験体 A~E はジョンソン式、限界 細長比以上の試験体 F~I はオイラー式によって算定した ものである。

3 材料試験

使用する鋼材について,試験体と同一断面の試験片を 用いて,引張試験と曲げ試験を行い,材料の機械的性質 を把握した(紙面の都合上,試験方法の詳細は,割愛す る)。代表的な試験結果として,引張試験より得られた応 力度-ひずみ度関係を図 D-2 に示す。引張試験より得ら れた鋼材の機械的性質は,ヤング係数 E=214,000N/mm², 降伏応力度 σ_y=703N/mm²,引張強度 σ_u=735N/mm²となった。 また,これらの値を用いると限界細長比は A_σ=70.8 とな った。ここで,使用した材料には,明確な降伏点が現れ なかったため,降伏応力度として,0.2%耐力を採用した (図 D-2)。本実験で採用した材料は,SS400(ミガキ四角 棒)であるが,降伏応力度および引張強度は,一般的な SS400 材の値よりも大きい結果が得られた。本実験では, 前記の実験値を採用し,以降の検討を行った。

Nonlinear Buckling of Bending Columns (Part IV : Experiment Overview)

表 D-1	試驗体	概要
	H AND ALL	170

試験体名			Α	В	С	D	E	F	G	H	I	
部材長さ L mm				150	300	450	600	750	900	1050	1200	1350
幅 B mm			19									
厚さ H mm			19									
断面積 A mm ²			361									
Ħ	所面2次モーメント	Ι	mm^4					10860				
断面2次半径 i mm			5.48									
	細長比	Л	~	13.7	27.3	41.0	54.7	68.4	82.0	95.7	109.0	123.1
	基準化細長比	Λ'		0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
:11	断面係数	Ζ	mm ³	1143								
	塑性断面係数	Z_p	mm ³	1715								
方	全塑性モーメント	M_p	kN • mm	1205								
向	最大モーメント	Mu	kN • mm	1260								
	降伏モーメント	My	kN • mm	804								
	断面係数	Z	mm ³	808								
対角方向	塑性断面係数	Zp	mm ³	1617								
	全塑性モーメント	Mp	kN • mm	1137								
	最大モーメント	Mu	kN•mm	1188								
	降伏モーメント	My	kN · mm	568								

4 実験概要

図 D-3 に実験のセットアップを示す。実験は、静的ア クチュエータを用いた静的加力実験である。試験体を取 り付ける左右の治具には幅 19mm×高さ 19mm×深さ 60mm の穴あけ加工が施してあり(写真 D-1),試験体の端部を 60mm はめ込む事で、両端が固定端とみなせる状態で実験 を行った(座屈長さは L/2 となる)。従って,表 D-1 に示 す部材長さ L に 120mm を加えたものが実際に使用した試 験体の外形寸法となる。計測について,試験体の軸方向 および面外方向の変形を正確に計測するため、図 D-3 に 示す 9 箇所(図中の太矢印)に変位計を設置した。軸方向 の荷重は、静的アクチュエータに取り付けたロードセル により計測した。また、各試験体 3 体(試験体 H のみ 2 本) については、試験体の両端および中央の3 か所各4 面(計 12 か所)に塑性域ひずみゲージ(ひずみ限界 10 ~15%)を貼り付け、ひずみの計測も行った。センサーに よる計測の他に、部材変形(主に部材中央のたわみ角 θ_{max}) を観測する目的で、試験体の上面および側面からデジタ ルカメラによる写真撮影を座屈後の軸方向変位 10mm 毎に 行った。載荷速度は,載荷開始から座屈時まで約 0.3kN/sec, 座屈後は 10mm/min (座屈後の軸方向変位 100mm まで)とした。

5 実験結果

一例として, 試験体 C の実験結果を示す。図 D-4 は試 験体 C 全 6 本 (No. 1~No. 6) の実験から得られた軸方向 の荷重 - 変形関係である。ここで、軸方向変形 δ, は、各 所に取り付けた変位計の値を基に、試験体のみの変形量 を算定した結果を用いている。本実験では、各形状につ いて複数体の加力実験を行っているが、図 D-4 に示す通 り,座屈荷重および荷重-変形関係の結果にばらつきは 無く,形状毎にほぼ同一の結果が得られている。図 D-5 (左)には、座屈後の部材変形を示す。図に示す通り、 今回実験を行った試験体の多くは, 面外斜め方向に座屈 する結果が得られている。理論予想との比較の際に必要 となる座屈後の部材変形については、試験体両端部を結 んだ直線を Y軸とし、Y軸に平行な軸を y軸, Y軸に直交 する試験体中央の変形方向を x 軸とした x-y 座標平面を基 準にして,図D-5(右)(既報,その2の図B-1を再掲) に示す水平変位 *δ*_H(k), 部材高さ h(k)を変位計の値を基に 算定した。また、部材中央のたわみ角 θmax を写真による観 測から求めた。

次報(その 5)では、各試験体の実験結果を示し、実験 結果について考察する。

* 東京都市大学大学院 工学研究科 建築学専攻修士
** 愛知工業大学 工学部 建築学科 講師
*** 東京都市大学 工学部 建築学科 教授

(左:実験結果例 試験体 C 右:理論予想)

参考文献

- 西村功,鈴木敏志,江里口知輝:中心圧縮柱の非線形座屈に関する研究 -その1:非線形座屈モデルの仮説-,日本建築学会大会学術講演 梗概集,pp251-252,2017年8月
- 2) 西村功,鈴木敏志,江里口知輝:中心圧縮柱の非線形座屈に関する研究 -その2:非線形座屈状態の変形状態と安定性-,日本建築学会大会学術講演梗概集,pp253-254,2017年8月
- 3) 西村功,鈴木敏志,江里口知輝:中心圧縮柱の非線形座屈に関する研究 -その3:分岐の発生とその後の安定性-,日本建築学会大会学術 講演梗概集,pp255-256,2017年8月

* Graduate Student, Dep. of Architecture, Tokyo City University

- ** Lect., Dept. of Architecture, Aichi Institute of Technology
- ** Prof., Dept. of Architecture, Tokyo City University