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Chapter 1: Introduction

1.1 Need for renewablenergy

Theincreag in industrializatiorandrapid growth in human populatiois envisage to
intensify the demand for energwy the nearfuture by a significant proportion. The
primary source oenergy fossil fuelcoal, oil, andnaturalgas) which accounted for
66.7% of the worldenergy consumptiohas been predicted gxhausin supply sooner
or later(Fig. 1.1)[1]. Also, the primary source of energlpoesproduce carbon dioxide

(COy), whichhasbeen identifiecas themaincauseof global warmind2, 3, 4.
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Fig. 1.1 2014 World energgonsumption for electricity generation by the Inteioal
Energy Agency (IEA, 2016) [5].

According to Fig. 1.1,nuclear poweraccounted for 10% of the world energy
consumption Nuclear powercan also providelargescale electricity generation
However it has been proven to bextremelydangerous and hazardouSlean and
renewable energguch aghe wind energy biomassenergy geothermaknergy ocean
energy solarenergy andhydropowerhasgained significant attentiomsan outstanding

candidatefor the future power generatiomhese renewable energiage considered as



the bestsubstitutesfor primary energybecause they are environmentally benign and
abundantAmong the renewable energy sourcaslar energyis the most promising
because oits enormoustheoreticaland technical potentiafor its use[6,7,8,9. The
amount ofenergy from sunlight strikg the earth in1 houris about4.3x 10°° J, which

is higher than all ofthe energy currently consumed on the planet in caer (¢.1

x107°J), yethuman onlyutilizesa small fraction of thiinfinite solar resourced 0, 11].

1.2 SolarCells

A solar cellor photovoltaicdeviceis required to capture a substantial amount of energy
from the sunlight incident orthe surface of the eartind convert it into electricityOver

the past four decades, various solar dadige beerntensivelyinvestigated andsed for
solar energy conversion as shown in Fig. Sdar cells are broadly dividedinto two
main groupgInorganic and Organic solar cell)he prototype inorganisolar cellis a
siliconrbased FN junction[12]. There arevariousforms of silicon solarcellsand is by

far the mostextensivelyused solar cells. The single crystalline silicon solar cells are
usually better than the polycrystalline silicon solar céllsshown in Figl.2 the single
crystalline silicon solar cell has @&ed an efficiency of 27.6%.he GaAs solar cells
have equally showman unprecedentedise in efficiency (29.3%) rivaling that of the
single crystalline silicon solar cellThe highest efficiency of over 40% haeen
achieved by the multijunction GaAs solar cels. However, solar cells based on

crystalline siliconand GaAgnaterials are expensiwaving to their high production cost
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Fig. 1.2Efficiency chartof solar celloover time Adapted from the National Renewable
Energy Laboratory (NREL])13].

In order toreduce the production cost of crystalline silicon solar cells, various
thin-film technologiessuch ascopper indium gallium diselenideC(GS), cadmium
telluride CdTeg, and amgphous siliconhave been developedrhe CiIGSand CdTe
have achieved efficiency of 226 and 22.1%, respectively. These efficiencies are
attractive and comparable to those of silicon solar cAlso, the amorphous silan
solar cellwhich suffers from degradation undéumination achieved an efficiency of
about 14.0%(Fig. 1.2)[9]. Emerging photovoltaics such ayesensitized solar cells
(DSSCs)prganicsolar cells, polymer solar cells, quantum dot solar cells and perovskite
solar cells(PSCs)have gained considerable attentidms is because theyan be
fabricated usingolutionprocessassembled using lowost materialsandfabricatedoy

coste ecti ve met hods .thenTth lees @ery pomisingrenewalzdek e



energy technologietiowever, DSSCsguantum dot solacells, andorganicsolarcells
usually suffer from poostability andefficienciesmaking them inferior tdhat of the
crystalline silicon solar cellsIn recent years, organioorganic hybrid halide
perovskites have attracteduch attentionfrom the solar cells researcheedter it was
first usad asalight-absorbingmnaterialin a DSSC structure by Kojima and-awmrker in
2009 With a certified efficiency of 22.19%SCsperformance can be comparable to that
of the CIGS and the traditionakingle crystalline silicon solar cellsPSCshave the
potential tosurpassthe crystalline silicon solar celleegardingefficiency, cost and
stability and equally competewith the energy generated from fossil fuels. However,
intensive research &till needed to solve some of tRSCsmajor drawbackssuch as
nortuniform film morphology, currentvoltage hysteresis,Lead (Pb) toxicity, and

stability.

1.2.1Operation principle of Solar Cell
In any solar cellthelight to electricityconversion processan be broke down into the
following steps:
1 Generabn of electronhole pairs or excitos in the absorbermaterial due to
absorption of photons
1 The excited charge carriereléctronhole pairs) areseparatéd and moved
towardsthe contact electrodes.
1 The separated chargarrias are collectd by the electrodes, where the electron

flows through the external circuit before recombining with the hole.

Notably, the typical solar cell technology in use toayasedn @ n junctions with p
and ndoped crystalline silicoras light absorber matati Fig 1.3 showshe energy
diagram of asilicon solar cellpin junction in equilibrium. The energy diagram
explains the basic working principles @fctrorhole separation irthe corresponding
solar cell. As it can be seen in Fid.3,the electron in the valence band is excited into
the conduction bandhen a photon with energy higher than band gaps absorbed
The photeexcitedcharge carriers are separatd hole diffuses to the metal contact,



and the electron iswept acrosshe junction by a strong builh electric field and

collected by the metal electratfe’?
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Fig. 1.3 Energy diagram of asilicon solar cellpin junction [14]. (E;, E,, and &

representthe conductionband valenceband and Fermienergylevel, respectively.
While hv is the photonwhere h isPlancks constant(J.s)andv is the frequency of the
light (Hz))

1.2.2Electrical Characterization of Solar Cells

Since solarcell convertdight energy into electricity, the performance of the solar cell
should be evaluated using electrical measurenidre most commorcharacterization
methods are théght and darkcurrentvoltage (1-V) and quantum efficienc{QE) or
incident photorito-electron conversion efficiency (IPCE). These methedll be

discussed imoredetail hereafter.

1.2.3Solar Spectral Irradiance

To accurately comparthe |-V performanceaesultof varioustypes ofsolar cells same
measuring procedureshould be followed This is because the solar celrV
performance depends severalparameterssuch asveather(cloud cover, rain, snow,
temperaturg the time of the day (day, night), the time of the year (summer, wither),
incident light intensityand the spectral intensity distribution of the incidegttt [9,15].
Considering thathe spectral intensity distribution of theunlight on the surface of the
earth depends oseveral parametersolar cell scientists and engineers have agreed to
measure thé-V curves undedefined illumination condition§l5]. Fig. 1.4ashowsthe
schematic illustration of the air masses AM 0, AM 1.0, and AM Hi&. 1.4bpresents

the schematiallustration of thespectral distribution geometry. The normal of the



receiving surface isilted by an angld, towards the equatod is the angle between the
groundnormaland the sun at zenitiwhichis used to calcula the AM as the inverse of

cos(d). The spectrum obtained after transmitted through a particular airisnassally
describedy the abbreviatioAM followed by a numeric figurg9]. As it canbe seenn
Figld,out si de the atmosphere of t hedspeetalr t h, t
intensity distribution.This extra terrestrial spectum is called the AM Ospectrum

according to American Society for Testing and Materials (ASTM) E4A¥0G&tandard,

and the solar constant is 1366.1 Wii®]. The least possibldistance which the light

has to pass through the atmospheraproaclthe surface of the earth is at the equator,

is termedAM 1.0 (Fig. 1.4a)

AM 15 Zenith S A o
d=48.2 <@>
(@) AM 1.0 (b) (AM 1.5) D\
AM 0O v
Sun
Earth .
Tilted surface
I\ \Earth\s}ace

Atmosphere

Fig. 1.4 (a) Schematicillustration of the air massAM 0, AM 1.0, and AM 1.5, (b)
schematiallustration of the spectral distribution geometry depictihg earth,the sun
tilted anglet, andd. The normalto the tilted surfacés n. Note thesdigures arenot
drawn toscale and it is just for illustrationSince the sun is larger than the earth the
incident light area that showers the earth cacdresidered as planar (Fig. th)4Note

thatthe concept of these drawingsbasedn referencg9, 16].
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Fig. 1.5 Solar irradiation spectra of AM 0, AM 1.5G, and AM 1.5 D according to
ASTM standard

Fig. 1.5 shows the solar spectrabdiance vesus wavelength of AM 0, AM
1.5G andAM 1.5D. The AM 1.5G (where G stands fdahe Global standard by ASTM
G173)spectrum has been chosenthemostwidely accepted standard to measure solar
cell performancelata[15]. This spectrum correspondso s peci yc angul ar
where the suns locatedat an angle of about 48.2Vith referenceto the zenith, and
where the surface normal of the solar cell formsaagle of 37°with referenceto the
zenith(Fig. 1.4b [15,16]. AM 1.5G has a totgbower of 1000 W/riwhich is obtained
by integration.The AM 1.5 spectrum is also known as AM 1.5D whédestandsfor
direct, and circumsolar, which is tleasiesspectrum to achieve reproduciblshe AM
1.5D is obtained merelywhen viewing the sun through a circular aperture with an
opening angle 05.8, i.e., the sun is at the center of the apertdige sunlight thats
obtainedthrough such an aperture includes the irradiance from solar disk together w
irradiation from he corona. AM1.5D spectrum has a total power of 901\k\mhich
canbeobtained by integratiof®)].



1.2.4 Equivalent Circuit of Solar Cell

Usually, a solar cell behaves like a diode when measured in the dark. Therefore, for an
ideal @ n junction solarcell, the dependene of the current densityon voltageis given

by the Shockley diode equatioby 17].

, , A6
06 UAQ%—4 P oF:)

wheree is the elementary chard€), V is the appliedioltage(V), kg is the Boltzmann
constan{J.KY), T is the temperatur@), andJyis the reverse saturation current density
(Alcm?), i.e., the current densitpassingthrough thediode when a relatively high
reverse bias is appliedrig. 16 shows the equivalentircuit diagram of a solar cell
where a constarturrent source is in parallel with the junctiady, is photocurrent
densitygenerated under illuminatio/cm?). Rs, and Rs are the parasitishuns and
series resistances Y, respectively The R, can be determined from the slope of the
current densifiwvoltage (i V) curve near the shodircuit currentdensitypoint While

Rs can be extracted from the slopeJeV curve atthe open circuitvoltage pointin an
ideal solar cell, the value &, andRsarerespectively infinity and zero.

Rl o

NS A +

O

Fig. 1.6Equivalent circuit diagram of tgpical siliconsolar cell with a single diode



From the equivalent circuit abovéhe expression fathe current density is shownin

equationl.2

O U 0 U g
WhereJp is thediodecurrentdensity andJq, is the currentlensitylost due toRs,. For a
single diode model]p can be estimated using t&ockleyequation of an ideal diode
shown in equation 1.3
Qw UY

V] v AQBW P p&_

Herein, n represesthe diode ideality factor-or an ideal diode n=ITherefore,if we
substituteequation 13 into equation 1.2, the equation becomes:
Qw UY

O 0 UAQBWpU oF: 1

Equationl.4 canbe further expressexk

Do o AgRe oY @ Oy
vuv v Bty P

pd

Equation 1.4 &1.5an be used tanalyzethe experimentalli V curves of a typical pn
junction, organic and hybridolar cels under solairradiation[15]. Several parameters
canbededucedrom theJi V curve under illumination, which wilbe discusseth more

detail hereafter.



1.25 Current -Voltage Characteristics

The measurement dii V is oneof the simplestmethodsto evaluate the performance of
solar cels. The light and dark measurements of th& curvescan be conductedy
applying a bias voltage between the contacts of the solar cell. The measurédvdark

curve can give information about the charge conduction in the device.

—
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(2]
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3
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Power density (mW/cmz)

v

max

—— .

(=]

- J-V curve under illumination
Power density
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Current density (mAlcmz)

Voltage (V)

Fig. 1.7 Ji V characteristicof a typical PSCshowing different measuring conditions
(under illumination, and in the dark). The power denisitgbtainedoy multiplying the

voltageby the current density.

Whereas, from the illuminatedi V curve, parameters such smximumpower (RPay),
the shorcircuit current densityJ,), opencircuit voltage (\c), and Fill Factor (FJ-can
be deducedThus, the power conversion efficiency (PCE) bardeterminedrom these
parameters. Fig. Zshows theli V curves of a typicaPSCmeasured under illumination
with simulatedsunlight @M 1.5 G, 100mW/cn).
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1.2.6 Short-circuit current density

The Jsc is the current that flows through the exteraiatuit when the electrodes of the
solar cellare shorcircuited [18]. In otherwords, Jscis the current density generated
when the solar cdll applied voltage is zera.€., no currents injected byan external
voltage sourceunderillumination [15]. It is worth mentioning thafscof a solar cell
depends on several factors such as photon flux detisgtgreaof the lightabsorbing

material, and opticgroperties of the active area.

1.2.7 Opentcircuit voltage

The V. is the voltage at which no current flows through the external cidtug.the
maximum voltage thatolar cells casupply[18]. For a conventionalim junction solar
cell, Vocis a function ofT, Jon, and Jo (seeequationl.6). Also, Vis related tothe

amount of recombination in the solar cell.

£Q YI TO
9 5 P pPE

1.2.8Fill Factor

The FFis the ratio between the maximupower generated by a solar cell and the
product ofVy. and Jse. As shown in Figl.7, the Pnax produ@d by a solar cell cabe
estimatedusing equation 7.

0 0 W P&
whereJnax andVmax are thecorrespondingnaximum voltagd€V) and currentlensityof

the solar cellrespectively. The mathematical expression of thesFRhownin equation
18

00 -

P&y

11



1.2.9 PowerConversion Efficiency

The PCEo r cafgbe estimate@s the ratio of th®,ax generated by a solar cell to the
incident power (R) [18]. For AM 1.5G, R is calculated tdbe 1000W#?. This has
become the standard value for measuringjtbesolar cells. The of a solar cell can be
calculated using the expressioreiuationl.9.

) W
- = v @p TihT P8O

Using the definition of the FF can d&so be expressed by equatiodd.

0

CA
Cc
cq &-

0
@p miht PP T

1.2.10Quantum Efficiency Measurements

The quantum efficiency involves thexternal quantum efficiency (EQE9nd internal
quantum efficiency (IQE) [19]The EQEis the number of extracteglectronhole pairs
perincident photor{(equation 1.1).

'O"Oé 6 GO QDOGEENNTQDO QQ &
U 1 r r LY th pl 0 e, b w b4 1 r
€00 wQME W QP 6 € | PP P

IQE canbe determinetby the light reflectance and the spectral respoB&EE is
sometimes called the incident photimacurrent efficiency (IPCE).The latteris a
technique used to evaluate how different absorbing materials used in theeuxz|tzdf
photocurrent generatioril}]. In most cases, EQE measuredwvith a light source
(realized by amonochromatic lightat low light intensity.Fig. 1.8 shows the IPE
curve of PSQwith an excitonic absorption peak at around 78Q bisually, for ideal
guantumefficiency, the IPCE value reaches 100% for the entire ddaswe wavelength.
However, in solarcells the quantum efficiency is usually less than 100% due to

recombinatioreffects and defects in the device.

12
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Fig. 1.8atypical IPCE curveof PSC

IPCE can be calculated using the fallog expression in equation 21

‘00 6FD 0P ¢

wherehi s t he Pl a@g, kié the speechdd ligimis) isahe wavelength
of light (nm), eis the elementary chard€), and R, is the photon fluxin DSSCsJPCE

canbe expressedccording taequation 1.3) [20].
V060 - - - PP O

whered, e is the light harvesting efficiency @ certainwavelengthd;y is the electron
injection efficiency, andj.is the electron collection efficiencinorganicsolarcells the
EQE canbe representetly the producof each efficency described in equation 1.14
[21].

- - - - PP T
where— is the light absorptioefficiency,— is the exciton diffusion efficiencto the
donoii acceptor interfage- is the chargeransferefficiency, and— is the charge

collection efficiency at the electrodels principle, theJsc can be calculatedby the

13



integration of IPCE for the whole solar spectrurheTrelationship between the IPCE

and the correspondinly.is shownin equationl.15.

0 — 0 g _006.0_"Q_ PP v

whered 5 is assumed to be equivalent to photon fltiis worth mentioning that in
practice, thelscestimated according to equatid..15 doesnot always match well the
corresponding value obtained from thie¢/ measurerants.This is dueto themismatch

between the spectral irradiance provided by the solar simulator and AM 1.5G spectrum.

14



1.3 Perovskite solar cells
1.3.1 What is Perovskite?

Perovskite is any material that has the same mineral structure of calcium titanium oxide
(CaTiGs). ThestructureCaTiO; was discovered by a German mineralogist Gustav Rose
in 1839. Perovskitederived its name from &ussian mineralogist Lev APerovski
(1792 1856) following his pioneering workon the mineral structur22]. The family

of perovskite has the general formula ABXvhere A and B are cations of different
sizes, and X is an aniowhere X=oxygen, halogens, or alkali metdi<g. 1.9. Among

the perovskite family, oxideased perovskites hateen extensively studidamecause of
their superior ferroelectricity, magnetiand superconductive propertied3[ 24]. In
1958 Moller characterized the first halidesedperovskite structurecesium lead
halide (CsPbX) [25]. Later, in 1978Weber and Naturfosch studied methylammonium
lead halide (ChNH3PbXs, where X=I, CI, Br) In the 1990s, Mitzi andoworkers
studied the optoelectronics properties of s8H3PbX; perovskites, whichwas later
employedn thin films transistors (TFT)ral lightemitting diodes (LED)Z6).

Fig. 1.9 Cubic structure of CENH3Pbk perovskites with the generahemical formula
ABX3 organic or inorganic cations occupy positigh (green) whereas metal cations
and halides occupy th8 (blue) and X (purple) positions, respeeely. Adapted from
referencd27).

15



1.3.2Perovskite crystal structure and composition

As mentioned insection1.3.1, the general formula of perovskiie ABX3.The most
researchegberovskitas are methylammonium lead triiodide perovsk€HsNH3Pbk),
mixed halide perovskiee (CHsNH3PbkCly and CHNH3Pbk.Bry), and
formamidiniumlead triiodide (NHCHNH,Pbk, FAPbE) adoptthe general perovskite
chemical formula ABX. Where A is the organic cations @¥Hs" (MA™) and
HC(NH,)," (FA"), B is metal cation (PB, Srf*), and X is halide anion (CIBr, I or
mixed halides) 28]. In an ideal perovskite gstal structure, B isurrounded by an
octahedron of anions [BX], while A is 12fold cuboctahedracoordinated wh X
anions, as shown in Fig.9 [27, 29. It is worth noting thathe degree of stability and
physical properties of perovskites (electronic, magnetic, dmllectric) depends
crucially on the tolerance factor. The Goldschmidt tolerance factéEqt)ation1.15)

can be used to measure the distortion betwbe AX and B X bond lengths30].
5 Y oY ®
me'y Y P
WhereRa, Rs, R, is the ionic radii of A, B, X, respectively.

To alleviate the mismatch of crystal components and octahedral tilting of
perovskitet should be close to Typically, the cubic structure for oxide perovskites
in the rang®.89<t<1[31], whereas halide perovskitanges from 0.85<t<1.11[32]. For
hybrid halide perovskite, the B sii®normally surroundelly a large atom of Pb @&n
Thereforg A site must be large enough to maintain the tolerance fdttiie A site is
not largeenough the cubic structure and symmetry will be distorted and reduced,
respectively.When A site is surroundedby voluminous anions, such as lonaghain
alkylamine the lead halide perovskite becomes a-tiraensional (2D) layer structure
[33,34]. Li etal. proposedhe octahedral factopj shown inequationl.16can be used

tofurthersupport the Gol dsd3mi dt 6s t ol erance f ac
Y
Ut 5 PP @

For halide perovskitau is in the range of 0.44Q.895[32]. t and i provide a useful
guideline for predicting halide perovskitermability. However they are noentirely

sufficient for determining structures afl the perovskite family [2432]. Furthermore,

16



according to Xray diffraction (XRD) results, perovskite crystals have different phases

such as cubic, tetragonal, andhorhombic[35]. Typically, perovskites adopt cubic

structures and encounter phase transitions from cubic to tetragonal to orthorhatimbic

respect taemperature 36]. Kanatzidis et alhavest udi ed the structur al
transformations for thenost researched hybrid perovskité¢h e r e U, b, and o

high temperature, intermediatemperatureand low-temperature phasesespectively

[37.

1.3.30verview of the development of perovskite solar cells

In 2006 Miyasaka and eworkers firstincorporatedCH3;NH3;PbBr perovskitesas a
sensitizer onnanoporousTiO; in liquid electrolytebased dyesensitized solar cells
(DSSCs)and achieved an efficiency of 2.2%3§]. Later in 2009, thePCE of their
device reache8.8% by replacing the Br with[39]. It was foundthat the devices were
prone to dissolution and poor stability due to the polar electrolyte soliti@®.11, the
PCE of perovskitesensitized solar cells gradually increased toual6.5% by Park and
co-workers B0]. To further improve the PCE and stability BSCsa solid electrolyte
2,2,7, 7 tetrakis (N,N-di-p-methoxyphenylamine9,9-spirobifluorene (Spiro-
OMeTAD) was incorporatedas a hole transport material (HTMi) 2012 This led to
achieving aPCE of9.7%and improvedievicestability [41]. Later, in 2012 Snaith and
co-workersachieved a PCE of 10.9% usingreesoporous alumina (#Ds) scaffoldas
an electron transport layer (ETLand CHNH3Pbk <Clx perovskiteto fabricatemesoe
superstructure solar cel{MSSCs)[42]. In 2013, Gré#zel andco-workersreported the
sequential deposition method to fabricate Fpghformance perovskisensitized solar
cell and achieved an efficiepof about 15.0%43]. In order tosimplify the device
architecture, later in 2013, Snaith andveorkers developed-i-p (0, i, p refersto the
electron transporting layer, lighttbsorber layer, and hole transporting layer,
respectively planar heterojunction structurBSCs The planarPSCs without the
mesoporousayer exhibited a PCE of 15.4%4]. Since then, the PCEs &SCswith
various geometrieand processing methods haween developednd itsPCEreaching
22.1%[4Y]. It has been widely reported thé&iet high efficiencyexhibitedby PSCscan
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be attributed to its excellent photovoltaics properties suctuaable bandgapsi§],
| arge absor ptdlomgh chargefcarger mabitityd]/], [long exciton
diffusion length 8, 49, andsmall exciton binding energy $ meV)[50].

1.34 Perovskite solar cell architectures

In this type of solar celithe lightabsorbing layer (perovskité& usuallysandwichedn
between an ETL and hole transport layerHTL). Since the first report of PSC by
Miyasaka and coworkers in 2009, various architectures have teeelopedto
fabricatehigh-performanceé?SC.In this section] will discuss only the most commonly
usedstructures, which are: (a) Mesoporous structureB(Hayer mesoporoustructure,

(c) n-i-p planar structure, Jg>-i-n planar structure.

1.3.5Mesoporous structure

The first geometry of PSC evolved from tiselid-stateDSSCsstructure. Fig. 1.10(a)

shows the schematic illustration of a typical mesoporous strucfitiemesoporous

structure is made up dfuorine-doped tin oxide FTO) glass substrate followed by a

compact ETL (usually titanium oxide (T#Dwith a thickness of about 50 nm). Next is a
mesoporous ETL (Ti&) Al,Oz) with a film thickness of about 350 nor more The
lighttabsor bing | ayer fAperovskiteo is da&positec
HTL (e.g, SpircOMeTAD) with a film thickness of about 250 nrRinally, about 80

nm of a metal contact (Au¥ depositedn the HTL B0-43]. A PCE of over 15.0% has

been achievedith the mesoporous structuj43].
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(a) Ag/Au (b) Ag/Au
HTL HTL

(c) Ag/Au (d) Ag/AU/Al
ETL

Fig. 1.10 The schematic illustratioa of the (a) mesoporous structure, (m}layer
structure (c) n-i-p planarstructure and (d)-pn planar structure. FTO, ITGTL, and
HTL representdluorine-dopedtin oxide; Indium-dopedtin oxide, ekctron transport
layer, and hole transport layer, respectively.

In this type of structure, the perovskite ligitisorbing layers usually fabricatedy
two-step deposition method43]. The surface overage, grain size, uniformity,
roughness of the perovskite layer, which is solely controlled by the underneath
mesoporas layerstrongly,affects the device perfogmce and reproducibilitybfl-53].

The mesoporous structure has the advantadessf pronouncéysteresis in thdiV
measuremestand the disadvantage tie high-temperatureannealing processihe
mesoporoustructure is not a feasible approach when considering large area device on a
low-temperaturdlexible substrate.
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1.3.6Bi-layer structure

Fig. 1.10 (b) shows the schematic illustration of tbelayer structure.The overall
thickness of the mesoporossaffold of this type of structure is usually thinner than the
conventional mesopous structureq4, 55. The capping layer structusgas developed

to prevent possible shunting pathways in the dewdsch resultsfrom insufficient
porefilling of the perovskite intothe mesoporousscaffold b4, 56, 57]. PSCs
employing thebi-layer structure havdemonstrated high PCEs15%) with negligible
Ji'V hysteresisg8, 59, 60.

1.3.7n-i-p planar structure

Fig. 1.10(c) shows the schematic illustration of a typindatp planar structure, which
consiss of FTO/ETL/perovskite/HTL/m&l contact (Au/Ag). The ideology ofn-i-p
planar PSCs coulbe tracled back to AbOs-based mesoporous PSZ2]. Snaith and
coworkes found that highperformance PSCs coulde achievel without the
mesoporoudiO, ETL. In 2013, Snaith et al. achieved a PCE of if6¥planar based
PSG fabricaed via vapor deposition metho82, 44]. Since thenn-i-p planar PSC
architecture has gained considerable attention among $tessresearch community.
The planar structure was feasible becdbhsenetal halideperovskite exhib& ambipolar
propertiesJong charge carrier diffusion lengths of about 100 nm fogNHHPbk and
1000 nm for CHNH3PbkCly [48, 49]. This architecture offers the advantagek
simplified device geometry easy fabrication methos, versatility for device
optimization and lowcost for mass productioflowever,n-i-p planar PSC also suffers
from poor film formability especiallywhen prepared using solutigmocessand much

worseldi V hysteresis than the mesoporous devicés,[63.
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1.3.8p-i-n planar structure

Fig. 1.10(d) shows the schematic illustration of a typicakm planar structure PSC.
The concept of this typef architecturewas derivedrom thetraditional organic solar
cells [63]. The first p-i-n planar PSC employed the traditiongdoly 3,4
ethylen@ioxythiophend: poly(styrenesulfonic acid) PEDOT: PSS and fulleree
derivative as the HTL and ETlespectivelywhich exhibited a PCE of 3.99%63]. At
that time, it was found the natonstant perovskite morphology ®#EDOT: PSSHTL

led to the low PCETo optimize the PCE of-pn PSC structureseveral attempts were
made to improve # perovskite film formation anohterfaceengineering $4-70]. It is
worth noting that the p-n PSC structure has the advantages of the possibility of low
temperature preparatioayoiding the need of dopants in the HTL and compatibility
with organic eletronics manufacturing processegl]] Thesefeaturesare somewhat

difficult to achieve im-i-p PSC structure.

1.3.9Energy band diagramof typical PSCs

Perovskite ChHNH3Pbk is a directbandgapsemiconductor material witln optical
band gap energy approximately 1.8V, which correspondo an absorption onset of
about800 nm.Thelargeabsorption coefficient in the visible regionl(®® cm™) enable
efficient lightharvesting by building a high density of photoexcitedrgls with ~ 300
nm thick laye{41, 46, 72
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Fig. 1.11Energy band diagram oFi-p PSC describing the process of light absorption
and generation of fregarriers.hvis the photorenergy where h is th® | a ncornstarg

andv is the photots frequency.
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Fig. 1.11 shows the energy band diagrarh a typical n-i-p structure PSC
demonstrating the process of the charge transfer mecharAsemding to previous
reports, the 1.2V bandgap of CHNH3Pbk perovskiteis mainly determinedy the
[Pbl]® network.This suggests that the organic comporgathewhat does natfluence
the bawl gap energyhowever is responsible for the formation of the 3i&rovskite
crystal[73-78]. As shownin Fig. 1.11, absorption of photons createlectronhole pairs
in the perovskite. These charge carriers could exist as free carrfermaxcitors with
a smallbinding energy in the range of a few muliectronvolts (19-50 meV) which is
contrary to that observeid organic solar cell$79]. Next, theelectronhole pairs are
thermalized and transported to the ETL and HTL respectively. Finally, the electron and
holeare extractethy the FTO andanetal contacfAu or Ag), and husa complete circuit
is formed.The CHNH3Pbk perovskite possesses excellent attributesateatrucial for
the development of efficient solar cells. Among these attribubessttong optical
absorption long electrorhole diffusionlengths,and small exciton binding energgr
norrexcitonic natureof the chargegeneration areessentialto the outstanding
performanceof PSCs.Most especially, thénigh V. observed in PSCsvhich further
suggestthat the energeticost associated witkexciton splitting isnot predominant
[79,80, 81].

1.3.10Deposition of meal halide perovskite film

In PSCs, the quality of the perovskite film is paramount important. It often determines
the performance of the devic&o achieve higiperformance PSCst is crucial to
fabricate perovskite filmwith high crystallineand uniform morphologyPerovskite
films canbe fabricatedsia vapor deposition and solutiggrocessmethods[44,8284].

The vapor deposition method was firstly demonstrated by Snaitbcavatkers in2013

[44]. They employeddual source evaporation systems tlsaparatelycontain the
methylammonium iodideGHsNH3l) andlead chloride RPbCh) to deposit higkguality
CH3NH3Pbk «Cly films, exhibiting a PCE of about 15.0%ig. 1.12(@@)). Despite the

high PCEs achieved by vapor deposition methods, it has the disadvantdige of
possibility of high-cost manufacturing since it requires advanced and expensive
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vacuum facilitiesAs demonstrated bghen et al.the vaporassisted solutioprocess
(VASP) is combiningsolution process of lead iodide (Pblayer and vapor deposition
of CH3NH3l to form perovskite film with full coverage, microscale grain size and
uniform grain structureyhich exhibiteda PCE of about 12.1%-ig. 1.12()) [84].

(@) (b)

Organic vapor

dcrm/
Inorganic film Inorganic film
Substrate Substrate Substrate Substrate

Organic Inorganic
source source

Fig. 1.12 Schematidllustration of perovskite filndeposition. (a) Duasource thermal
evaporation sstem, adapted from referenc#d]. (b)Vaporassistedsolution process,

adapted from referencg].

Solution processmethodsare divided into two major types: onstep and tweo
step methodsUnder the twestep methods, therare two types of techniqus: (i)
sequentialdeposition andii) two-step spircoating methods. Thsolution processing
methods have the advantages of dabeication andow-cost manufacturing even on
large substratesAmong all the deposition methods, estep solution method is the
simplest anckasiestlt involves the spircoating of a mixture of PbXand CHNH3X
(X=Cl, Br, I) in a polar solvent such asbutyrolactone (GBL) N,N-dimethylformamide
(DMF) or dimethylsulfoxide(DMSOQO) on top ofthe planar substrater a mesoporous
scaffold and followed by thermal annealin@rig. 1.13 [41,42,61,85-88]. Perovskite
films prepared by onstep solution process are usually prone to pinhole and non

constant morphology especiatiy planar substratd$1].
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‘ CHaNH;Pbl
FTO FTO FTO

Annealing
Spinrcoating

Fig. 1.13Schematic illustration of onstep spircoating method

The twoastep sequentialdepositionmethod was first reported by Mitzi and
coworkersin 1998 to make perovskite film89]. In 2013, Gréatzel and coworkers
adopted thisapproachto fabricate high-quality perovskite film on a mesoporous
structure[43]. The twostep sequential method involves tepircoating of the Pbb
precursoronto a mesoporous or planar substr&geform Pbj film and followed by
dipping into CHNHjsl- IsopropanolIPA) solution to form CHNH3Pbk (Fig. 1.14a)).

In thismethod the morphology of the final perovskite film depends on the nature of the
Pbk film, and the dipping time of Pbfilm into the CHNH3l-IPA solution[32]. The
two-stepsequentiatleposition method isosty suitablefor mesoporoustructure PSE
However, on planar substratesthe perovskiteformation is usually associatedwith
problems such as dissolutiamd peelingoff dueto the long soaking timeof Pbk film

into the CHNHG3l-IPA solution[32, 89, 9Q. The long soaking timés required to
achievng sufficient diffusion and intercalation of GNHsl into thecompactPbl, films

[32.
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(b)

Pb, Pbl, CHsNHPbk

TiO;, TiO, TiO, TiO,
FTO FTO FTO FTO

. Annealing
Annealing

Spincoating Spin-coating

Fig. 1.14 Schematic illustration of(a) sequential deposition meth@hl) two-step spin

coating method

In order to circumvent the problem of incompletenversion of PRl into
perovskites, and gain a better control of perovskite morphology, Park and-his co
workers proposed the twsiep spircoating approach, in which the @N&H;l-IPA
solution is dropped onto the Blpirecursor film, followed byg@n coatng (Fig. 1.14(b))

[32, 58, 92 Later n 2014, Xiao et al. adopted the tstep spircoating approach and
developed the interdiffusiostrategy.The resultant perovskite filnwas treatecby a
solventvaporassisted annealing which led tohagh-quality perovskite film p6,69.
Since thenseveralresearch grouphave adopted the twstep spircoating method or
the madlified interdiffusion approacho fabricate high-performance and reproducible
PSCs 66,68,9396]. Compared to twsstep sequential method, dvstep spircoating
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technique isa welldefined method because it can quantitativegnage the fabrication

process$2].

1.3.11Drawbacks of PSCs

PSCsare facedvith some challengesuch agoorstability, lead toxicity, andhysteresis
in J-V measuremest Among these issuet)e stability of PSG hasbeen pinpointeads
one of the most challenging pitfalls Niu et al. review paper, they identifiexkygen
and moisture, ultraiolet (UV) light, solution processing anmperatureas the key
iIssues causindegradation in perovskite filnBf]. They reported that oxygen together
with moisture could lead to irreversible degradation ofs/HEPbk as shown in the

reactions below.

CHNHgPbk (S)=—= Phi(s) + CHNHl (ag) (1.17)
CH:NHl (ag)——== CHNH. (aq)+ HI (aq]) (118
4HI (ag) + Q (g)=—— 2i(s) +2HO()) (1.39
2HI () === H(g) + k(s) (129

It was foundthat the absorption dhe TiO,/CH3NH3Pbk film between 530 nm and 800

nm greatly decreased after exposure to air with a humidity of 60% at 35°C for 18 h. The
group further confirmedhe degradation of the perovskite filby comparingXRD
patternsbefore and after exposure to moistui@/]. Contrary to Niu et al. report, Kamat

and coworkers found that the reaction of 8lH;Pbk with H,O leads to the formation

of a hydrate phase, suals (CHNHz3),Pbkt2H,0, in addition to PbI[98]. Later Leguy

et al. suggested that the crystal structure formed after the degradation is a different
hydrate phase of GCHsPbkiH,O and proposed that the intermediate
CH3NHsPbktH,O further decompose into {GNHs)4Pbki2H,O and Pkl phases
[99,100. These conflicting findings further suggest that the degradation mechanism of
PSCs is not fully understooth order toimprove the PSCstability, severbapproaches

have been proposedl(1-105. Among these approaches the introduction of
CH3NH3Br into the chemical structure of the unstable s8HsPbk [97, 106].
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Surprisingly, the device with GNIH3Br showed good stability after exposure to 55%
humidity for 20 days with high PCELP7. Niemann etl. found that the replacement of
an organic ligand CiNH3l with an alkali metal such as Cesium (Cs) or Rubidium (Rb)
can improve the stability of PSC408, 109. Tai etal. reported improved stability for
CHsNH3Pbk «(SCN) compared to CENHsPbk [110. Karunadasa and eworkers
reported that the twdimensional (2D) hybrid perovskite (PEAYIA) o[Phslig] (PEA =
CeHs(CH,)oNH3", MA = CHsNH3") as lightabsorbe in PSCs can improve stability
[117].

Anothercritical issue is the toxic heavy me{&b) contained in PSC%o address
this issue significant efforts have been made to fabricate Heae PSCslin 2014,
Kanatzidisand co-workersrepored the first attempt usig the leaeree perovskite of
methylammonium tin iodide (C#NH3Snk) as thelight-absorbing material to fabricate
solutionprocessed solidtate photovoltaic devicesvhich exhibited a PCE of 5.23%
[112. In an attempt to improve the PCE ©H3;NH3Snk PSCsthe chemicalreactionof
iodide with bromideenabled thesfficient energetic tuning of the band structure of the
perovskitesresultingto a PCE of 5.8%1[12. It is worth mentioning thaCH3;NH3Snk
PSCs suffes from poor atmospheric stability and PCHsis poor grformanceis
attributedto the ptype doping via ST oxidation inducediuring the fabrication process
[117). To improve theperformance of CENH3SnkPSCs tin fluoride (Snk) was added
to CH3NH3Snk to efficienty turn the CHsNH3Snk into Srf*-rich materialthat can
suppress the formation of Sn vacanc[@43. Another strategy was to introduce
hydrazineinto CHsNHsSnk which induced the suppression of $hformation and
resulting in improved carrier lifetime and reduced defecind trapinduced
recombination in Sibased perovskite filnji114]. These techniques led to substantial
improvement in thgerformance ofCH;NH3Snk-based PSCs. Also, significant efforts
have been made to develpprovskite derivativeby the substitutiorof Pb with other
metals such as germanium (Ge), bismuth (Bi), antimony &8k) so on 106,102.

However, theiperformance is stillleficientcompared to the Shased PSCs.
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Pertaining the Plbased devicest hasbeen estimatethat upon dissolution of
perovskite layer of a module withe onemetersquare areahe impact would not be
disastrousdue to the relatively smalamount (<1g) of lead contained(6,119.
Furthermore, proper device encapsulation could limit the Pka¢makiuring the cell
operation, and appropriate eatilife disposal could further rede environmental
effects of Pb 106, 116].

Another severedrawbackof PSCs is the anomalous hysteresisiiv curves
which is the difference in the current measumedhe forward and reverse scanning
directions.Snaith and his cavorkersin 2014 observed for the first time anomalous
hysteresisn PSCs[117]. It was foundthat theJi V measurements strongly depend on
the voltagesweep rate and scan directioor(fard and reverse voltageanningi.e.,
from shortcircuit to open circuit, and from open circuit to shartuit, respectively)
which becomes more severe as the scanigalewed dowrj117]. In their studiesthree
types of PSCs architectwre(i) planar heterojunction solar cells, (ii) perovskite
sensitized solar cells fabricated on mesoporous,, T&d (iii) mesesuperstructure
solar cells (MSSCs) with AD; scaffold were employedto unravel the origin of
hysteresis Furthermore it was foundthat hysteresispredominantly arises from the
perovskte absorber in the solar cellso, thedevice architectussandcontactmaterias,
including p and ntype contactzan determine the degree of hyster¢sis/]. To shed
more light on their findings, Snaith and his cworkers further hypothesizedthree
possible origins of hysteresi@) trapping and detrapping of charge carrigtghin the
perovskites (ii) ferroelectric properties of the perovskite of the materials, and (iii)
interstitial defects in the perovskitaused byons migration117]. Later in 2014, Park
andco-workersreportedthat capacitive characteristics and crystal size ofNHHPbk
are found to influencdi V hysteresig118]. It was foundthat theJi V hysteresisis
alleviatedas crystal size increasésterestingly, the invertepglanarstructure PSCs with
fullerene as ETL hashown negligible hysteres[§5,70, 119-121]. The fullerene can
penetrate or diffuse into the perovskite layer through the grain boundarieg dgpir
coating and annealinNd21, 122]. Moreover thefullerene interactsvith the mobile ions

in the perovskite toform a fullerene halide radicall10], which stabilizes the
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electrostatic propertieof the perovskites mitigakes the ionic movementin the

perovskitesand thus rasting in negligible hysteresid21-124].

1.4 Objective of study

Renewable and clean energy supplies are indispensable for sustainable economic
development, environmental safety, and the mitigation of global warming. Among
various renewable energy technologies, solar cells are probably the most promising
alternative toconventional fossil fuels. Recentlsplar cells based on orgasmorganic
perovskite lightabsorbing materials have attracteonsiderableattention among the
photovoltaic research community due to their low fabrication cost and high PIGEs.
PSCs thelight-absorbing layerperovskite), whichs usuallysandwichedetween the

ETL andHTL is one of the most significant componengsiggesting that it must be
high-quality to guarantee high PCESinceperovskite materialare moisture sensitive

and unstable when exposed to high humid environmémty are usually fabricated
usinghumidity controlfacilities such agyloveboxand deposition machines. The use of
such expensive vacuufacilities would significantly increase itsrpduction cost and
energy payback time therebyamperingts commercializationlt is believedthat PSCs

would be more attractive and cetective if it canbe fabricatedn the air like the
DSSCs.Moreover the PCE strongly depends on the fabricatiorethod it is essential

to efficiently and meticulously study the device fabricationmethodsunder different
condition for the future application In this thesiswe proposedsimple and efficient

ways to fabricatehigh-quality perovskite films with improvedniformity for high-

performancelanarPSCsunderambientair condition
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1.5 Composition of thesis

In this thesis we proposé novel device fabrication meths@nd evaluatedhe device
characteristics.This paper consists of 6 chapter€hapter1 shows the research
backgroundf solar cells andPSCs Chapters 3 to 5 itheresearch contermf this thesis

and Chapter 6 hesummary

Chapter 1 describes the importance of solar energy and why it is prédetalihe
energy from fossil fuel. furtherintroduces solar cell, types of solar cells as well as the
fundamental theories and physics of solar CHfle latter part of chapter Jresentsa
general review on perovskites an excellent ligkebsorbing material for solar cells. It
also covers further discussions on PSCs sucthaslevelopment ofPSCs, device
architecturesgnergy band diagram aftypical PSCdepositionmethodsf metal halide

perovskite thin flmsnddrawbackof PSCs.

Chapter 2 introduces theexperimental methodgsjevice fabrication anckvaluation
methods used in this thesis.

Chapter 3 proposesa simple and efficient way to fabricate PSOfe PSC was
fabricated usingwo-step spin-coating methodtogetherwith air-assistedflow under
ambient air conditionThe correlations between the films prepared with and without

airflow and device performanege systematicallinvestigated

Chapter 4 describeplanar PSCéabricatedby a simple onetep solution procesand
antisolventbath (ASB) methosl underambient aircondition Diethyl ether (DEE),
which has a low boiling point and no solubility or reactivity with the perovskite
precursors, was used to extract Mrenethyt2-pyrrolidone (NMP) ancb-butyrolactone
(GBL) solvents from the spinoated solution film.This enableda uniform, highly
snooth and glossy perovskite filnThe morphologyand grain growth of the resultant
perovskite filmwere further improvedby solvent annealing (SA9pproachPerovskite
films treated with SA, thermal annealing (TA) and without treatmerre
systematicallynvestigatedDevice containing films prepared i SA, TA and without
annealing were fabricated and analyZEais work highlights the importance 8A for

perovskitefilm prepared by a orstep solution process and A3Bethodand offers a
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simde and attractive way to fabricate higlerformancePSCs under ambient air

condition

Chapter 5 introducesplanar PSCéased orlow-temperature amorphous tungsten oxide
(WOy)/fullerene Go ETLs. The WQ/Ceo ETLs werefabricated using solutioprocess.

The perovskite film was deposited usioge step solution process aWdB method in
ambient air further suggesting the robtness ofthis method. The Gy layer is
incorporated to suppress the inherent charge recombination at the perovskite/WO
interface. The effect of incorporatings{interlayer on the device performanaes
systematically investigatedrhis work demonstrategshat WO,/Cgo ETLS can work
together to enhance the performance of PS@geover,a potential lowtemperature

approach.

Chapter 6 summarizes the issue discussed in this thesists significance andthe

scope of future research
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Chapter 2

Experimental M ethodsand Characterization
2.1 Materials and reagents

Methylammonium iodideGHsNHsl) was synthesizedn accordance witlthe reported
procedureq1]. Fluorinedopedtin oxide (FTO) glass substrates (sheet resistance: 12
q 6g) were purchasetfom Asahi GlassSemicaClean, acetonasopropanolfungsten
hexachloride (WGL 09 9. 9 %Aldrich$ i tigamiuan(1V)isopropoxide(99.0%),
ethanol, acetonitrile, dhlorobenzene dimethyformamide (DMF) (SigmaAldrich,
99.8%),N-methyt2-pyrrolidone (NMP; >99%, Sigma | d r i-butyrplactone (GBL;
>98.5%, SigmaAldrich), anhydrous diethyl ether (DEE; >99.0%, SigAldrich),
dimethyl sulfoxide (DMSO; 99.0%, Wako)ufierene Go(>99%, Jilin OLED Material),
2,2,7,7-tetrakisN,N-di-p-methoxyphenylamine9,9-spirobifluoreng(SpiroOMeTAD),

and Pbj (99.0 %, SigmaAldrich) were used without further treatment.

2.2 Fabrication of perovskite solar cells

In this studythe n-i-p planarstructure (see section 1.37 chapter 1was usedor the
fabrication of perovskite solar cells (PSCs). The emticeess except for the deposition

of back contact electrode (Au) was carried out by solution process under ambient ai

condition. In this sectiorl,will mention the fabrication steps of PSCs.

2.2.1Preparation of working electrode

Fig. 2.1ashowsthe schematic diagranof the patterned FTO glass substrahile Fig.

2.1b presents thaltraviolet UV) ozone treatmentquipmentln this thesisFTO glass
substratesvereusedas the substraté. waspatterned by etchingith hydrochloric acid
(HCI) andzinc powderandsequentially cleanedith SemiceClean ultrahighpurified
water, acetoneandisopropanal The cleaned FTO glass substratas transferredhto

the chamber of thaJV ozone cleane(Nippon Laser and ElectronicdiLE-UV253)).

The chamber wapurged by Qat 0.2 MPa forl min then treatedvith UV-light for 15

min. After the UV ozone treatment, the chamber was purged by 0.2 Mfeat N min

to eliminate theemaining ozong2).
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Fig. 2.1 Schematiadiagram showing the patterned FTO glass substrate, (bKpxévie

treatmenequipmen{2].

2.2.2 Depositionof compactTiO, as anelectron transport layer

Fig. 2.2a shows the chemical structure of titanium(IV) isopropoxide (TTIP). Fig. 2.2b
describeghe fabricationprocessof the compactTiO, electron transport layer (ETL).
The compact TIQ ETL was prepared bgpincoatinga solution of TTIP (1.5 ml) in
ethanol {0 ml) andHCI (0.1 ml) onto thecleanedFTO substrateat 3000 rpm fothe
20sto form an approximatelybO-nm+-thick layer All the samplesvere movednto a hot
plate and kept at 12% for 20 min and then sintered at 5@ for 30 min(Fig. 2.D).

XTTIP + ethanoH+HCI

(b)
TiO, (50 nm)
FTO
Sintered at 500 °C
Spin-coating for 30 min

Fig. 2.2(a) Chemical structure of titanium(lV) isopropoxide. @¢hematidllustration
of the fabrication oEompact TiQ layer.
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