繊維補強コンクリート充填角形鋼管短柱の圧縮特性に関する基礎的研究

Fundamental Study on Compression Property of Fiber Reinforced Concrete Filled Square Steel Tube Short Columns

圧縮強度 ヤング係数 圧縮軟化特性 空気量 鋼繊維 繊維混入率

1. はじめに

コンクリート充填鋼管(CFT) 柱構造は,鋼管とコン クリートの相互作用(相乗効果)により,優れた特性 を発揮する。このようなことから,近年,超高層建築 物に CFT 柱構造が多く採用されており,これに伴い, CFT 柱に使用する鋼管およびコンクリートの超高強度 化が求められている。

CFT 柱の断面形状は主に,円形と角形の2種類ある。 角形 CFT 柱構造は円形と比較して,柱梁接合部の継手・ 仕口における施工性が優れることなどから,施工実績 が高い。よって,今後,角形 CFT 柱の耐力・変形性能は, さらに重要視されることが予測される。しかし,角形 CFT 柱は円形と比較して,変形性能が劣り,かつ鋼管 および充填コンクリートが高強度化するほど,CFT 柱 特有の変形性能が著しく失われてしまう研究結果が得 られている^{例えば1)}。従って,今後,超高強度 CFT 柱 構造をより一般的な構造形式として実用化するために は,CFT 柱の鋼管および充填コンクリートの超高強度 化に伴い低下する変形性能の改善方法を確立する必要 がある。

以上のことから,筆者らは,超高強度 CFT 柱の変形 性能の低下を改善するため,従来から多くの研究成果 が蓄積されてる高靭性の繊維補強コンクリート(FRC) に着目し,繊維補強コンクリート充填鋼管(以下,FR-CFT)柱の開発を試みることとした。そこで,まず超高 強度の繊維補強コンクリートおよび FR-CFT 短柱の圧縮 特性について実験的に検討したので,それら結果を報 告をする。

2. 実験概要

2.1 実施試験·計測項目

(a) FRC

主に空気量試験(JIS A 1171:2000に準拠), 圧縮試 験(JIS A 1108:2010に準拠)および静弾性係数試験

* 国立豊田工業高等専門学校建築学科	准教授・博士(工学)

** 愛知工業大学工学部建築学科 教授・工博

*** 国立豊田工業高等専門学校建築学科 本科生

	正会員	〇山本	貴正	*	YAMAMOT	0, Takamasa
	同	山田	和夫	**	YAMADA,	Kazuo
	会員外	阿部〕	真也	***	ABE, Ma	saya
	同	永田	哲平	***	NAGATA,	Teppei

(JIS A 1149:2010 に準拠)を実施し、空気量、実測繊 維混入率、圧縮応力度 - 圧縮ひずみ度関係などを計測 した。圧縮ひずみ度は、圧縮強度到達前はコンプレッ ソメータの変位計、圧縮強度到達以降は試験機ヘッド ストロークを用いて求めた。

(b) FR-CFT 短柱

圧縮試験を既報¹⁾の試験方法に従い実施した。

2.2 実験因子

FRCの実験因子として,主に繊維補強の有無,繊維 混入率,繊種を取り上げた。

2.3 使用材料

表1に調合表を示す。セメントは普通ポルトランド セメント(密度:3.15g/cm³)とシリカフューム混合セ メント(密度:3.04g/cm³),細骨材は天竜川産の川砂(表 乾密度:2.64g/cm³,吸水率:0.82%)と多治見産の山砂 (表乾密度:2.55g/cm³,吸水率:1.78%),粗骨材は天竜 川産の川砂利(表乾密度:2.65g/cm³,吸水率:0.74%), 混和材はシリカフューム(密度:2.22g/cm³),混和剤は 高性能減水剤(主成分:ポリカルボン酸系コポリマー) を使用した。鋼繊維は、立体波形の普通鋼(公称長さ:

表 1 調合表

調合	W/B	Air	W	С	M_a	V_{S}	C_a/C	V_f	
番号	(%)	(%)		(kg/m^3)		(l/m^3)	(%)	(vol.%)	
1	12	4.0	165	1484*	148	217*	1.3	5.5**	
2	20	4.0	158	1024**	-	371*	6.0	5.0**	
3	12	4.0	155	1550*	-	282*	2.0	1.5*	
4	20	4.0	155	838*	-	518**	1.5	2.0,3.0,3.5*	
5	12	4.0	180	1556*	156	497*	1.5	4.0*	
6	20	4.0	160	741**	148	1207**	2.0	2.0,4.0*	
C=セメント(*シリカフューム混合セメント,**普通ポルトランドセメント)									
Vs=細骨材(* 天竜川産川砂,** 多治見産山砂)									
<i>Vf=</i> 繊維混入率 (* 高張力鋼, ** 普通鋼), 調合番号 5,6: 空気量の計測なし									

Assoc. Prof., Dept. of Architecture, National Institute of Technology, Toyota College, Dr. Eng.

Prof., Dept. of Architecture, Faculty of Engineering, Aichi Institute of Technology, Dr. Eng.

Regular Student, Dept. of Architecture, National Institute of Technology, Toyota College

- 33 -

30mm, 公称直径:0.8mm)とフック付ストレートの高張 力鋼(公称長さ:30mm,公称直径:0.38mm)である。なお, コンクリート標準供試体用の型枠は内径100mm・内高 200mmの鋼製型枠を使用した。

FR-CFT 短柱に使用した鋼管は、市販の STKR400-100x100x3.2 である。この鋼管短柱の圧縮試験におけ る降伏応力度は 421N/mm²,板厚の実測値は 3.22mm であ る。なお FR-CFT 短柱は、前掲表1の調合番号4の試料 を使用している。

2.4 試験体作製

試料の混練には,容量 60*l* の二軸強制練ミキサを使用 した。ミキサの軸回転数は 4r/min である。

コンクリートの型枠および鋼管への充填方法は,縦方 向打設の落とし込みとし,2層詰めで,各層を突き棒で 15回突き,その後,プラスチックハンマーで,突き棒に よりできた穴がなくなるまで型枠側面を軽く叩いた。な お,FRCを型枠もしくは鋼管に充填する作業において, 通常のハンドスコップと併用して,ハンドフォークを 使用した。FRCの養生は,CFT 試験体と同一条件にする ため,その強度試験日まで実験室内にて封緘養生とし た。

混練および型枠打設の手順は、まず繊維補強なし(繊 維混入率0%)で行い、その後、計画した繊維を混入し た。なお、計画した繊維を混入した後毎に空気量試験 を実施した。実測繊維混入率は、先の計画調合で試料 を採取した型枠の容積と実測空気量を用いて算出した。 ここでは、各材料ともにそれら調合表の値に比例して 型枠へ打設されていると仮定している。

3. 実験結果·考察

3.1 FRCの圧縮強度と空気量の関係

図1にFRCの圧縮強度平均値と実測空気量の関係に 及ぼす繊種の影響を示す。図の縦横軸ともに,無補強 (繊維混入率0%)の圧縮強度平均値および実測空気量 で除してある。図中のRは,全供試体を対象とした縦 横軸の相関係数であり,実線は最小二乗法による近似 直線を表している。

同図より、各繊種ともに、縦軸と横軸は、負の相関 があることが認められる。よって、このFRCの鋼繊維 混入による圧縮強度の高低は、空気量が起因し、繊維 補強は直接影響しないと考えられる。

3.2 ヤング係数

(a) 無補強(繊維混入率O%)

表 2に,無補強コンクリート(繊維混入率 0%)のヤング係数の計算値に対する実測値(以下,実測計算比)の基本統計量などが示してある。ヤング係数 *E_c*の計算値は NEW-RC 指針式^{2,3)}[式(1)]の値とした。

 $E_c = 33.5 k_1 \cdot k_2 (\gamma / 2.4)^2 (\sigma_B / 60)^{1/3}$ (1) ここに、 k_1 = 骨材による係数、 k_2 = 混和材による係数、 $\gamma = コンクリートの単位容積質量 (t/m³), E_c の単位 = kN/mm², \sigma_B の単位 = N/mm²$

実測計算比の正規分布確率紙上における相関係数は 0.99 である。

同表より,実測計算比の平均値が1.00であり,また 最大値かつ最小値が, *m*±2.0*s*(*m*:平均値,*s*:標本標準 偏差)の範囲内に存在していることがわかる。よって, 無補強コンクリートのヤング係数は,式(1)で評価 できると考えられる。

(b) FRC

図2にFRCのヤング係数の実測計算比[計算値:式(1)]と圧縮強度の関係に及ぼす設計繊維混入率の影響を示す。図中の実線,破線,一点鎖線と点線は,それぞれ前掲表2に示す無補強コンクリートの*m*,*m*±1.0*s*,*m*±2.0*s*と*m*±3.0*s*を表している。

同図より,広い圧縮強度の範囲において,i)低い設 計繊維混入率は,m±2.0s以内に,ii)中程度の設計繊

維混入率のほとんどは, m-1.0s 以下に, iii) 高い設計 繊維混入率の全ほとんどは, m-2.0s 以下に, 存在して いることが認められる。よって、繊維混入率が高いほ ど,実測計算比[計算値:式(1)]が低くなると言える。 そこで、圧縮強度に対し繊維補強が直接影響しないこ と(前述3.1参照)を踏まえ,式(1)の関数である 単位容積質量を, FRC のモルタルマトリクスの単位容 積質量として、そのヤング係数の計算値を検討した。

図3は、前掲図1の計算値を、モルタルマトリクス の単位容積質量を用いて算出したヤング係数の計算値 に置き換えている。なお、空気量を計測した調合番号 1-4の供試体のみ対象としている。

同図より, 各繊維混入率ともに, 実測計算比はある 程度, m±2.0s 以内に存在していることが認められる。 よって、FRCのヤング係数は、圧縮強度と同様に、繊 維補強の効果を直接受けず、モルタルマトリクスの単 位容積質量が影響すると考えられる。

3.3 FRC の圧縮軟化特性

ΨM

王縮応力度 / 圧縮強)

-0.4

図4(a)(b) にそれぞれ普通鋼と高張力鋼のFRCの応 力度 σ-ひずみ度 ε 関係の例を示す。図の縦軸は圧縮強 度に対する圧縮応力度(以下,圧縮強度比),横軸は

10

0,48

0.6 0.4

|0.2|

0.0

0.0

0.2

-0.2

圧縮ひずみ度と強度時圧縮ひずみ度の差(以下,強度 到達後ひずみ度)である。図中の破線は圧縮強度18N/ mm²注¹⁾の次式に示す Popovics モデル [式(2)]⁴⁾を 表している。

 $\sigma = \sigma B \bullet R \epsilon \bullet n / (n - 1 + R \epsilon^n)$ (2) $R\varepsilon = \varepsilon / \varepsilon_m$ $\varepsilon_m = (5.744 \sigma_B + 2170) 10^{-6}$ (3) $n = 0.0582 \sigma_B + 1$

ここに, σBの単位=N/mm², εm: 野口式 5) 同図(b)に示す高張力鋼 FRCC かつ実測繊維混入率 3.0% の3体中2体については、明確な圧縮強度時ひずみ度 が認められないため、それを 0.2% offset 法とした。な お、それらの第四象限は、明確な圧縮強度時ひずみ度

が認められる供試体とほぼ類似した曲線を示している。 図中の実線は実測値を、三角印は、負勾配が著しく厳 しくなる箇所を、表している。この現象は、圧縮破壊 が生じている箇所の鋼繊維の分布が影響していると考 えられる⁶⁾。

同図(a)より,実測繊維混入率5%程度の普通鋼 FRCCの圧縮軟化特性(第一象限)は,i)圧縮強度 18N/mm²のコンクリートのそれと比較し劣る,ii)圧縮 強度が高いほど,負勾配が著しく厳しくなりやすい,ことが認められる。

同図(b)より,高張力鋼FRCの圧縮軟化特性は,圧 縮強度18N/mm²のコンクリートのそれと比較し,i)低 い実測繊維混入率のそれは劣る,ii)高い実測繊維混 入率のそれは優れ,また高靭性を発揮することが認め られる。ただし,高実測繊維混入率においても,負勾 配が著しく厳しくなることがある。

3.4 FR-CFT 短柱の圧縮試験

図5に、繊維補強あり(FR-CFT)となし(CFT)のCFT 短柱の軸圧縮耐力と軸圧縮変位の関係を示す。図の縦 軸は、最大軸圧縮耐力に対する軸圧縮耐力(以下、最 大耐力比)を表している。横軸は、軸変位を試験体高 さで除した平均軸ひずみ度である。

同図より,FR-CFTの最大軸耐力到達直後の耐力低下 は、CFTと比較して緩やかであり、繊維補強による変 形性能の改善が認められる。しかし、FR-CFTのその後 の負勾配はFRCと同様に(前掲図3),著しく厳しくな ることが認められる。この現象も、圧縮破壊が生じて いる箇所の繊維の分布が影響していると考えられる。

4. おわりに

超高強度鋼繊維補強コンクリートの圧縮特性につい て実験的に検討した。これらより得られた知見を次に 示す。

- 1) FRC の鋼繊維混入による圧縮強度の高低は、繊維 混入率と繊種は直接影響せず、空気量が起因する。
- 2) FRC のヤング係数は,繊維補強の効果を直接受けず, モルタルマトリクスの単位容積質量が影響する。
- 3) 実測繊維混入率 5%程度の普通鋼 FRCC の圧縮軟化 特性は, 圧縮強度 18N/mm² のコンクリートのそれと 比較し劣り, また, 圧縮強度が高いほど, 負勾配が 著しく厳しくなりやすい。高張力鋼 FRC の圧縮軟化 特性は, 圧縮強度 18N/mm² のコンクリートのそれと 比較し, 低い実測繊維混入率では劣り, 一方, 高い 実測繊維混入率では優れ, 高靭性を発揮する。ただ し, 高実測繊維混入率においても, 負勾配が著しく 厳しくなることがある。
- 4) FR-CFT の最大軸耐力到達直後の耐力低下は、CFT

図5 CFT 短柱の圧縮特性に及ぼす繊維補強

と比較して緩やかであり、繊維補強による変形性能 の改善が認められる。しかし、FR-CFTのその後の負 勾配はFRCと同様に、著しく厳しくなることがある。

謝辞

本研究で使用した混和剤は竹本油脂株式会社より提供していただいた。本稿の研究成果は,平成27年度科学研究費補助金・若手(B)研究課題番号26820240の支援による。付記して謝意を表する。

参考文献

- 山本貴正,川口淳,山田和夫:コンクリート充 填角形鋼管短柱の安定した塑性変形を発揮する 圧縮耐力,日本建築学会構造系論文集,No.712, pp.951-959,2015.6
- 野口貴文,友澤史紀:高強度コンクリートの圧縮 強度とヤング係数との関係,日本建築学会構造系論 文集, No. 474, pp. 1-10, 1995.8
- 3) 日本建築学会:鉄筋コンクリート構造計算規準・ 同解説,第8版,2010.2
- 4) Popovics, S.,: Numerical Approach to Complete Stress-Strain Curve of Concrete, Cement and Concrete Research, Vol. 3, pp. 583-599, 1973
- 5) 野口貴文,友澤史紀:高強度コンクリートの圧縮 強度と各種力学特性との関係,日本建築学会構造系 論文集, No. 472, pp. 11-16, 1995.6
- 下川博之,金子佳生,三橋博三:繊維補強セメント系複合材料の圧縮軟化特性に関する基礎的研究,コンクリート工学年次論文集,Vol.26,No.1, pp.339-344,2004
- 注
- 1) コンクリートの圧縮軟化特性は、設計基準強度の 下限値 18N/mm² のコンクリートを基準とした。