コンクリート充填角形鋼管短柱の安定した塑性変形を発揮する圧縮耐力 STABILIZED COMPRESSIVE STRENGTH UNDER PLASTIC DEFORMATION OF CONCRETE FILLED SQUARE STEEL TUBE SHORT COLUMNS

山本貴正*,川口 淳**, 山田和夫*** Takamasa YAMAMOTO, Jun KAWAGUCHI and Kazuo YAMADA

The authors estimated the deteriorated compressive strength of concrete filled square steel tube (square CFT) short columns after the maximum strength attained, which is defined as the stabilized compressive strength (N_{stab}) . Next, the stabilized bending moment (M_{stab}) of square CFT columns were calculated by use of N_{stab} . Compression tests of high strength square CFT short columns using steel-fibered concrete (FR-CFT) were also carried out, in order to improve the compressive ductility. As results, the following has been found: i) N_{stab} decreases as the yield stress increases. ii) calculated M_{stab} shows good agreement with the experimental results. iii) axial compressive ductility of square FR-CFT short column is higher than square CFT with concrete without steel fibered.

Keywords : Compressive Strength, Yield Stress, Axial Compressive Strength, Bending Moment, Previous Experimental Data, Fiber Reinforcement 圧縮強度、降伏応力度、軸圧縮耐力、曲げモーメント、既往の実験データ、繊維補強

1. はじめに

1.1 本研究の背景・目的

高層建築物の構造形式として、コンクリート充填鋼管(以下、 CFT) 柱構造が多く採用されている。しかし、その耐震設計における 崩壊機構は、主として梁降伏型であり、CFT 柱特有の高靱性を活かし ていない^{注 1)}。そこで,CFT 柱の高靭性を活かすため,CFT 柱構造の 崩壊機構を従来の梁降伏型に加え、一部柱降伏を許容することが提 案されている^{例えば,2)}。また、CFT 柱の断面形状は主として、円形お よび角形の2種類あり、角形 CFT 柱構造は円形と比較して、柱梁接 合部の継手・仕口における施工性が優れることなどから、施工実績 が高い。よって、今後、角形 CFT 柱の靭性は、さらに重要視される ことが予測される。

角形 CFT 短柱の靭性は、AIJ-CFT 指針:2008³⁾(以下, CFT 指針)の 鋼管およびコンクリートの応力度-ひずみ度関係モデルを用いれば、 各種因子の軸圧縮耐力-軸圧縮変位関係および曲げモーメント-曲 率関係を比較して評価することができる。しかし、その靭性評価に は、多大な労力が必要で、かつ靭性を数値的に評価することが難しい。 また、これらの関係から、角形 CFT 柱の耐力劣化を含む水平力と部材角 の関係を解析的に導出するには、鋼管の局部座屈およびコンクリートの破 壊による耐力低下が生じる破壊領域および除荷される非破壊領域の長さ・ 範囲の設定に難がある⁴⁾。

単調軸圧縮を受ける CFT 短柱の軸圧縮特性は、CFT 柱の耐力・靭 性の指標となる。角形では、耐力低下後にある程度変形が進むと、 Fig.1 に示すように、耐力低下後に最小の軸圧縮耐力(以下、最小圧 縮耐力)が認められ、その直後、軸圧縮耐力が一定に安定すること が数多くの研究で確認されている。このことから、角形 CFT 短柱の 最大耐力到達後にある程度耐力が低下し、鋼管の局部座屈およびコン クリートの破壊による脆性的な破壊が生じない状態(以下,安定した 塑性変形)になる圧縮耐力 [以下,安定圧縮耐力:stabilized compres-

Fig.1 An example of axial compressive load (N) - axial compressive deformation (δ) relationship of square CFT short column $^{5)}$

Assoc. Prof., Dept. of Architecture, Toyota National College of Technology, Dr. Eng. Assoc. Prof., Graduate School of Engineering, Mie University, Dr. Eng. Prof., Dept. of Architecture, Faculty of Engineering, Aichi Institute of Technology, Dr. Eng.

国立豊田工業高等専門学校建築学科 准教授・博士(工学)

三重大学大学院工学研究科 准教授·博士(工学) 愛知工業大学工学部建築学科 教授·工博 * * *

sive strength (N_{stab})]を定量的に把握することは、角形 CFT 柱の靱性 の評価につながると考えられている⁶⁾。なお、安定圧縮耐力時の鋼 管とコンクリートの応力度も一定になると仮定すると、曲げを受け る柱の曲げモーメントも耐力低下後に一定に安定することになる。

以上より、本論では、まず角形 CFT 柱の靭性の評価につながると 考えられる安定圧縮耐力を、既往の実験データをもとに検討してい る。また曲げを受ける柱の最大耐力到達後、ある程度耐力が低下すると、 圧縮耐力と同様に、曲げモーメントが一定に安定することが確認されてい るため⁷⁾、この安定した塑性変形を発揮する曲げモーメント[以下、安 定曲げモーメント:stabilized bending moment (*M_{stab}*)]の算定に安定圧 縮耐力が適用できるかを、既往の研究成果を活用して検討している。 さらに、高強度材料を用いた角形 CFT 柱の靭性の改善を図ることを 目的として、従来から多くの研究成果が蓄積されている高靭性鋼繊 維補強コンクリートに着目し、鋼繊維補強を施した角形 CFT 短柱の 圧縮靭性についても、実験的に検討している。なお、ここでは、単調 軸圧縮力および等曲げモーメントを受ける柱を CFT 短柱、軸力と水平力を 受ける柱を CFT 柱と定義する。

1.2 本研究に関連する既往の研究成果

(1) 単調軸圧縮を受ける角形 CFT 短柱

CFT 短柱の最大圧縮耐力に及ぼす鋼管とコンクリートの相互作用 (以下,相乗効果)を検討する際,その比較対象として,次式に示す 鋼管とコンクリートの断面耐力の累加(以下,CFT 断面耐力)が用い られる。

 $N_0 = A_s \cdot \sigma_y + \psi \cdot A_c \cdot \sigma_B$ (1) ここに、 A_s, A_c :鋼管およびコンクリートの原断面積、 ψ :コンクリートの寸法効果による補正係数

角形 CFT 短柱の最大圧縮耐力は,CFT 指針の幅厚比制限値内であれ ば,式(1)の寸法効果を加味した CFT 断面耐力で,表すことができ る^{5,8)}。よって,最大圧縮耐力に及ぼす相乗効果はないと言われてい る。なお,これはコンクリートの形状効果による耐力低下と,相乗 効果による耐力上昇が相殺するためであると筆者らは考えている⁵⁾。

角形 CFT 短柱の鋼管およびコンクリートの応力度 - ひずみ度関係 は、コンファインドコンクリート、鋼管短柱などの実験結果をもと に構成している中原ら⁹⁾の計算モデルで精度よく表すことができる。 なお、このモデルは、耐力低下後に相乗効果が考慮されている。

(2) 一定軸力下の等曲げを受ける角形 CFT 短柱

角形 CFT 短柱の一定軸力下における等曲げモーメント - 曲率関係 は、単調および繰返し載荷ともに、中原らの応力度 - ひずみ度関係 モデル⁹⁾をもとに提案された中原らの計算モデル^{7,10)}で精度よく表 すことができる。なお、このモデルは、鋼管の曲げ引張側を2軸引 張応力状態としている。

2. 検討対象とする角形 CFT 短柱試験体

角形 CFT 短柱の安定圧縮耐力を,次の試験体を対象として検討する。 i) 鋼管とコンクリートを同時に圧縮載荷している。ii) 鋼管内面に 突起がない。iii) コンクリートに膨張性混和剤が混入されていない。 iv) コンクリートに空洞および鋼材が含まれていない。v) 溶接四面 組立鋼管を使用していない。vi) CFT 指針の幅厚比制限値を超える鋼 管を使用していない。

上記の条件 ii)は、通常の鋼管を用いた CFT 短柱と比較して耐力

が上昇することがある, iii)は、鋼管内と強度試験用供試体の型枠 内で養生したコンクリートの圧縮強度が異なることがある,v)は、 鋼管の角溶接の溶込みの影響で、局部座屈発生後の耐力低下が大き くなりやすいことがある¹¹⁾,vi)は、最大圧縮耐力が、本研究で、 安定圧縮耐力の高低の基準とする式(1)のCFT断面耐力に達しな いためである。なお、ここでは簡単に、鋼管の隅角部の曲率半径お よび溶接シーム面を無視し板厚を断面一様とする。また、隅角部お よびシーム面の加工硬化は、各文献において不明であるため無視し、 降伏応力度を断面一様とする。

3. 角形 CFT 短柱の安定圧縮耐力

前掲 Fig.1 に示すように,角形 CFT 短柱の単調軸圧縮試験において, 最小圧縮耐力を発揮した直後,軸圧縮耐力が一定に安定することが 数多くの研究で確認されている。そこで,最小圧縮耐力を安定圧縮 耐力とする。なお,最小圧縮耐力が認められる試験体を標本とした 注^{2),5,12-25)}。その標本の因子範囲を Table 1 に示す^{注 3)}。

Fig.2 に、CFT 断面耐力に対する安定圧縮耐力(以下,安定圧縮耐 カ比)とCFT 断面耐力に対する鋼管断面耐力(以下,鋼管断面耐力比) の関係に及ぼす鋼管の降伏応力度の影響を示す。図中の実線,破線 および一点鎖線は、それぞれ降伏応力度 294-428,440-554 および 618-834N/mm² の近似直線である。なお、CFT 断面耐力は、式(1)よ り補正係数を 1.0 として計算している。以下,断りがない限り,補 正係数は 1.0 とする。

同図より,鋼管断面耐力比が小さい,および鋼管の強度レベルが

 Table 1 Properties of specimens^{5,12-25)} for calibration

	(compressive tests of square CFT short column						
	factor	yield stress σ_y range					
	σ_v (N/mm ²)	294 - 428	440 - 554	618 - 834			
	<i>B</i> (mm)	100 - 400	151 - 250	120 - 200			
	B / t	17 - 49	17 - 34	19 - 31			
	$\sigma_B (N/mm^2)$	18 - 119	25 - 213	25 - 119			
	$N_{sy} / N_0 (\psi = 1.0)$	0.26 - 0.78	0.30-0.85	0.48 - 0.84			
	number of specimens	38	9	5			

 N_{sy} : cross sectional strength of steel tube $(= A_s \cdot \sigma_y)$

Fig.3 Relations between exponent *a* of Eq.(2) and yield stress

- 952 -

Fig.5 Comparisons between experimental N- δ relationships⁵⁾ and calculated stabilized compressive strength

高いほど安定圧縮耐力比が小さいことがわかる。後者については、 鋼管断面耐力比が同等の場合、降伏応力度が高いほど一般化幅厚比 $[B/t(\sigma_y/E_s)^{0.5}]$ が高くなり、鋼管が負担する軸圧縮耐力が局部座屈の 影響で低下するためと考えられる^{注4)}。そこで、安定圧縮耐力比と鋼 管断面耐力比の関係を、次式で評価することを試みた。

$$N_{stab} / N_0 = (N_{sy} / N_0)^a$$
 (2)

式(2)のN_{stab}に実験値を代入し,逆算して算出した指数aと降 伏応力度の関係をFig.3に示す。各印は,Fig.2と同様であり,実線 は次式に示す直線近似である。

$$a = 132 \sigma_{y} / E_{s} + 0.22 \tag{3}$$

ここに、
$$E_s$$
:鋼管のヤング係数 (=206kN/mm²)

なお,式(2),(3)の安定圧縮耐力の計算値に対する実験値の標準 偏差 s は 0.101 である。

Figs.4(a)-(f)に,式(2),(3)の安定圧縮耐力の計算値に対する 実験値と鋼管断面幅,鋼管板厚,鋼管幅厚比,鋼管の一般化幅厚比, コンクリート標準供試体(断面直径 100mm, 高さ 200mm)の圧縮強度 および鋼管断面耐力比の関係をそれぞれ示す。各印は, Fig.2 と同様 であり,一点鎖線および点線は,それぞれ1s および2s を表している。 また, Fig.5 に,最小圧縮耐力が認められないため前掲 Table 1 の標本に 含まれていない鋼管断面幅が 400mmの試験体の軸圧縮耐力と試験体高さ に対する軸圧縮変位の関係の実験値と,安定圧縮耐力の計算値を併 せて示す。破線は,安定圧縮耐力の計算値を,一点鎖線は,標準偏 差± 1s(前掲 Fig.4 参照)を加えた安定圧縮耐力の計算値をそれぞれ 表している。

Figs.4,5 より,安定圧縮耐力の計算値に対する実験値に及ぼす各種 因子の影響は,ほとんどないことが認められる。よって,安定圧縮 耐力は,式(2),(3)で表すことができ,i)鋼管断面耐力比が同等の 場合,降伏応力度が高いほど,安定圧縮耐力比が小さくなる,ii)降 伏応力度が同等の場合,幅厚比の大小および圧縮強度の高低は,同 一の安定圧縮耐力比-鋼管断面耐力比関係上を推移する,iii)安定 圧縮耐力の計算において,無視している鋼管の断面・力学性状に及 ぼす隅角部およびシーム面の影響は小さい,と考えられる。

式(2),(3)の安定圧縮耐力比の計算値は、例えば、鋼管幅厚 比30、鋼管の降伏応力度300N/mm²およびコンクリートの圧縮強度 30N/mm²(鋼管断面力比0.60)では、0.81であり、この圧縮強度を 120N/mm²(鋼管断面力比0.27)にすると0.58となる。さらに降伏応 力度を800N/mm²(鋼管断面力比0.50)にしても、安定圧縮耐力比は 0.60である。よって、コンクリートの高強度化は、圧縮靭性が低く なる、また鋼管の高強度化は、圧縮靭性の改善を期待できないと考 えられる。

4. 角形 CFT 柱の安定曲げモーメント

4. 1 安定曲げモーメントの計算モデル

CFT 指針および中原ら¹⁰⁾の終局曲げモーメントの計算モデルを参 考にした Fig.6 に示す応力分布を用いて,一定軸力 (*N_{const}*)を受ける 安定曲げモーメント (*M_{stab}*)を,次式で算出する。

$$\begin{split} M_{stab} &= M_{s} + M_{c} \tag{4} \\ M_{s} &= \left[(S + \beta) (B - \tau) B \cdot t / 2 + t \cdot x_{n} (S + \beta) (B_{c} - x_{n}) \right] \sigma_{y} \\ M_{c} &= r \cdot \sigma_{B} \cdot B_{c} \cdot x_{n} (D_{c} - x_{n}) / 2 \\ \vec{x} (4) の変数 x_{n} \vec{x}, \quad - 定軸力を用いて次式より算出する。 \end{split}$$

(5)

 $N_{const} = N_s + N_c$

$$N_{s} = [(S - \beta)B \cdot t + 2t \cdot x_{n}(S + \beta) - 2t \cdot B_{c} \cdot \beta]\sigma_{v}$$

 $N_c = r \cdot \sigma_B \cdot B_c \cdot x_n$

鋼管の引張応力度は、二軸応力状態を考慮し、降伏応力度のβ倍 とするが、この安定曲げモーメント時の定数βについては研究の現 状では不明な点が多いため、ここでは簡単に中原ら^{7,10)}の計算モデ ルを参考に1.1とする。また、定数S,rは、安定圧縮耐力時の鋼管 とコンクリートの応力度が一定値に収束すると仮定して、さらに、 簡単に、ヤング係数に比例し弾性回復するモデルで、計算する^{注5)}。 コンクリートのヤング係数は、密度が各文献において不明であるた め、圧縮強度のみをパラメータとしている次式の雨宮式²⁶⁾とした。

 $E_c = (3.57 \sigma_B^{0.5} + 5.7) \times 10^3$, 単位は N/mm² (6)

以上の計算モデルで安定曲げモーメントを算出する。ただし、高い 軸力比および高い鋼管の降伏応力度では^{注6)}、変数 x_n が鋼管ウェブ(*B-2t*) 内にある全ての場合において、引張合力が圧縮合力より高く、軸力が釣り 合わないため、安定曲げモーメントの解が得られない。これは、計算モデ ルが、前掲の Fig.6 に示すように、鋼管の引張断面の全領域を降伏応力度 と仮定していることが原因である。よって、高い軸力比および高い降伏応 力度では、定数 β を小さくする必要がある。しかし、定数 β と各種要因 との関係については不明であり、今後の検討課題である。なお、終局曲げ モーメント時では、高い軸力比および高い鋼管の降伏応力度において、鋼 管の引張縁のひずみ度が降伏ひずみに達していない実験結果が得られてい る²⁷⁾。

4.2 安定曲げモーメントの実験値と計算値の比較

一定軸力と水平力を受ける CFT 柱の曲げモーメントと部材角の関係は、耐力低下後において、その漸増繰返し載荷曲線の累積曲線と 単調載荷曲線の対応が良いことが認められている²⁸⁾。また、連名者 ら^{29,30)}は、角形 CFT 柱のある一定の変位振幅下における漸増繰返 し曲げ試験を実施し、各サイクルの最大水平力、最大変位振幅時の 水平力、および1サイクルの履歴曲線の面積が、サイクル数の増大

Fig.6 Stress distribution of steel tube and concrete in stabilized bending moment

Table 2 Square CFT column specimens tested under cyclic bending or shear bending (previous experimental data)

							(1-			/		
s	pecimens ,	В	\underline{B}	σ_y	σ_B	<u>L</u>	N _{const}	New N	Nstab.	loading		
	(mm) [(11/1	mn)	B	140	<i>I</i> v ₀	100	condition		
	SR4-A-4-C	210	36.0	323	39.2	6.0	0.38	0.50	0.74			
	SR4-A-9-C	210	36.0	323	88.2	6.0	0.38	0.31	0.61			
	SR4-C-4-C	210	46.7	326	39.2	6.0	0.37	0.43	0.70			
	SR4-C-9-C	209	46.4	326	88.2	6.0	0.38	0.25	0.55			
	SR6-A-4-C	211	23.9	588	39.3	6.0	0.35	0.74	0.84			
1)	SR6-A-9-C	211	23.9	588	88.3	6.0	0.35	0.56	0.71			
1)	SR6-C-4-C	211	35.5	609	39.3	6.0	0.34	0.66	0.78	tie rod type		
	SR6-C-9-C	210	35.3	609	93.7	6.0	0.36	0.45	0.61			
	SR8-A-4-C	178	18.8	837	42.3	6.0	0.40	0.83	0.87			
	SR8-A-9-C	179	18.9	837	94.5	6.0	0.40	0.69	0.76			
	SR8-C-4-C	180	27.0	805	42.3	6.0	0.41	0.76	0.82			
	SR8-C-9-C	180	27.0	805	94.5	6.0	0.40	0.59	0.68			
201	31C1510	100	33.4	324	22.6	10.5	0.15	0.65	0.83			
30)	31C3010	100	33.4	324	22.6	10.5	0.30	0.65	0.83			
31)	C253	150	25.0	505	32.8	5.0	0.30	0.74	0.85	cantilever		
33)	CBC-32-80-20	305	34.3	600	110	4.9	0.20	0.41	0.58			
	R33-03-60	100	33.4	403	68.5	6.0	0.30	0.44	0.68			
20	R33-04-60	100	33.4	403	68.5	6.0	0.40	0.44	0.68	kenken-type Wakabayashi		
52)	R44-02-60	100	44.3	384	61.5	6.0	0.20	0.38	0.64	-type)		
	R44-04-60	100	44.3	384	61.5	6.0	0.40	0.38	0.64			
	1 1 61								-			

L: test length of bending or shear bending tests, N_0 : calculated by Eq.(1) with $\psi = 1.0$

に伴い一定値に収束する実験結果を得ている。

以上より,角形 CFT 柱の漸増繰返し曲げおよび曲げせん断試験の 複数回の繰返し履歴における材端曲げモーメントの実験値と前述 4.1節の計算モデルで算出した安定曲げモーメントを比較し,計算 モデルの妥当性を検討する。実験値は,既往の実験データ^{1,30-33)}を 用い,Table 2に対象としている角形 CFT 柱試験体の因子が示してある。 なお,対象としている試験体の条件は,前述 2章の CFT 短柱と同様 である。

文献³⁰⁻³³⁾では実験結果の耐力を水平力で整理している。そこで, この水平力の実験値と,安定曲げモーメントの計算値を用いて次式 で算出する安定曲げモーメント時の水平力*H_{stab}*(以下,安定水平力) を比較する。

曲げ試験:
$$H_{stab} = (M_{stab} - N_{const} \cdot R \cdot L) / L$$
 (7)

曲げせん断試験: $H_{stab} = (2M_{stab} - N_{const} \cdot R \cdot L) / L$ (8)

ここに, R:部材角, L:試験部分の柱長さ

Figs.7(a),(b) に, それぞれ P-delta モーメントを含めた材端曲げモー メントおよび水平力と部材角の関係の実験最終サイクル^{1,30-33)}と 安定曲げモーメントおよび安定水平力の計算値を併せて示す。縦軸 は, それぞれ最大曲げモーメントおよび最大水平力の実験値で無次

broken line and chain line: calculated stabilized bending moment using Nstab and Nstab (1.0±s), Mmax: experimental maximum bending moment

(a) Comparisons between experimental final cycle of bending moment (M) - chord rotation angle (R) relationship¹) and calculated stabilized bending moment

broken line and chain line: calculated stabilized horizontal load using N_{stab} and N_{stab} (1.0±s), H_{max} : experimental maximum horizontal load

(b) Comparisons between experimental final cycle of horizontal load (H) - chord rotation angle (R) relationship³⁰⁻³³) and calculated stabilized horizontal load

Fig.7 Comparisons between experimental final cycle of M - R or H - R relationship and calculated stabilized bending moment and horizontal load

元化してある。破線は、安定曲げモーメントおよび水平力の計算値 を、一点鎖線は、標準偏差(前掲 Fig.4参照)を加えた安定圧縮耐力 [*N_{stab}*(1.0±s)]を用いて算出した安定曲げモーメントおよび安定水 平力の計算値をそれぞれ表している。

同図 (a),(b)より,試験体 31C1510, CBC-32-80-20 および R44-02-60 の3体を除き,安定曲げモーメントおよび安定水平力の計算値は, 実験値付近に存在し,かつ実験値と平行であり,その傾向を表して いることがわかる。なお,試験体 31C1510, CBC-32-80-20 および R44-02-60 については,実験値が他の試験体と異なり,最大振幅時ま で,水平力の低下が認められない。これらは軸力比が 0.2 以下で小 さく,優れたエネルギー吸収能力を有しており³⁴⁾,実験値が,安定 水平力に到達していない,ようは,実験において安定曲げモーメン トおよび安定水平力に到達する状態にないため,計算値は,その傾 向と一致しないと考えられる。

5. 鋼繊維補強を施した角形 CFT 短柱の圧縮靭性

前述3章より,角形CFT 短柱の圧縮靭性は,高強度コンクリート を使用するとすると低くなる,また高張力鋼を用いても,ほとんど 改善が改善されないと推測される。そこで,角形CFT 柱の靭性の改 善を図ることを目的として,従来から多くの研究成果が蓄積されて いる高靭性鋼繊維補強コンクリートに着目し,鋼繊維補強を施した 角形CFT 短柱(以下,繊維補強角形CFT 短柱)の圧縮靭性の改善効 果を,実験的に検討した。

5.1 実験概要

(1)実験因子範囲

実験の因子およびその範囲として、繊維補強の有無を取り上げた。

なお,参考のため,無補強の角形 CFT 短柱(以下,無補強角形 CFT 短柱) と同等の CFT 断面耐力を有する円形 CFT 短柱(以下,無補強円形 CFT 短柱)の実験も併せて実施した。

(2)使用材料·試験体作製

鋼管は、一般構造用角形鋼管 STKR400 および一般構造用炭素鋼 管 STK500 を用いた。寸法は公称でそれぞれ 100x100x2.3mm,および 114.3x1.8mm である。

Table 3 にコンクリートの調合表を示す。繊維混入率は外割体積で 4%である。セメントは普通ポルトランドセメント(密度:3.15g/ cm³),細骨材は天竜川産の川砂(表乾密度:2.64g/cm³,吸水率:0.82%), 混和剤は高性能 AE 減水剤(主成分:ポリカルボン酸系コポリマー) を使用した。鋼繊維は、立体波形の普通鋼繊維(長さ:40mm,直径: 0.8mm, 波長:10mm, 振幅:1.5mm, 製造方法:カットワイヤー)である。 なお、コンクリート標準供試体用の型枠は内径 100mm,内高 200mmの 鋼製型枠を使用した。また、コンクリート標準供試体の養生は、CFT 短柱試験体と同一条件にするため、その強度試験日まで実験室内に て封緘養生とした。

コンクリートの混練には、容量 601 の二軸強制練ミキサを使用した。 ミキサの軸回転数は 4r/min である。コンクリートの鋼管への充填工法 は、縦方向打設の落とし込みとし、3層詰めで、各層を突き棒で25回 突き、その後、プラスチックハンマーで、突き棒によりできた穴がな くなるまで鋼管側面を軽く叩いた。試験体の高さに対する断面寸法の 比は3である。なお、鋼繊維有無のコンクリートは、それぞれ異な るバッチで作製した。また、繊維補強コンクリートを標準供試体用 の型枠および鋼管に充填する作業において、通常のハンドスコップ

と併用して、ハンドフォークを使用した。

(3) 圧縮試験方法

実施した CFT 短柱の圧縮試験の概要を Fig.8 に示す。圧縮試験では, 相対する2台の変位計で上下の支圧板間の軸方向変位を測定した。 荷重は鋼管とコンクリートを同時に単調載荷する形式とし、平均軸 方向ひずみ度が6%になるまで加えることを原則とした。なお、上下 端ともに材端条件は、固定である。圧縮試験は、材齢4週後に実施 した。標準供試体の圧縮試験は、圧縮応力度の増大を毎秒 0.6N/mm² の自動制御で実施した。

5.2 実験結果·考察

Tables 4(a),(b) に, 鋼管からの採取片の引張試験結果, およびコン クリート標準供試体の圧縮試験結果をそれぞれ示す。また, Table 5 に, CFT 短柱の圧縮試験結果一覧が示してある。

Fig.9に、角形 CFT 短柱の軸圧縮耐力と試験体高さに対する軸圧縮 変位の関係に及ぼす繊維補強の影響を示す。縦軸は、最大軸圧縮耐 力で無次元化してある。

同図より、繊維補強角形 CFT 短柱の最大圧縮耐力到達後の耐力低 下勾配は、無補強と比較して緩やかであり、鋼繊維補強による角形 CFT 短柱の圧縮靭性の改善が認められる。なお、最大圧縮耐力に対す る安定圧縮強度は、繊維補強の有・無によりそれぞれ 0.69 および 0.55

Table 3 Mix proportions of concrete									
W/C	Air	SP	W	С	S_a	AD / C fiber volume fract			
(%)	(%)	(mm)		(kg/m ³)	(%)	(%.vol)		
23.7 4	4.5±1.5	12±2.5	243	1023	1023	1.75	4.0*		
Air: air content, SP: slump, W: water, C: cement, S_a : fine aggregate									

AD: additive (kg/m3), *outer percentage

95.1

Table 4 Material properties (b) Compressive test results of concrete standard test piece (a) Tensile test results of test piece cut from steel tube

			*				
_	steel type	t	σ _y	vield ratio	breaking elongation		
		(mm)	(N/mm ²)	yield fallo	(%)		
	STKR400	2.11	353	0.752	31.0		
	STK500	1.78	410 (0.2% off-set)	0.789	16.5		

fiber reinforced CFT short columns (un-reinforcement)

fig.8 Compression Test methods of CFT short columns

dencity σ_B number of specimens mean value steel fiber C.V.mean value C.V.(N/mm²) (%) (g/cm^3) (%) 80.9 3.28 2.28 0.255 un-reinforced 5

3.04

2.63

0.582

C.V.: coefficient of variation

5

reinforcement

Table 5. Compressive test results of CET short columns

Table 5 Compressive test results of Or 1 short columns							
ananimana	B(D)	R(D)/t	N ₀	N _{max}	<u>N_{max}</u>	N _{sy}	
specimens	(mm)	B(D)/l	(kN)	(kN)	N_0	N ₀	
fiber reinforced square CFT	100.0	47.4	1164	1232	0.98	0.25	
un-reinforced square CFT			1034	1050	1.02	0.28	
un-reinforced circular CFT	114.3	65.3	1034	1055	1.02	0.25	
\mathbf{W} : calculated by Eq.(1) with	ith w = 1	0 N .e	xnerim	ental co	mpressi	ve strei	

α by Eq.(1) with ψ = 1.0, N_{max}: experime:

- 956-

fiber reinforced square CFT

程度である^{注 7)}。繊維補強角形 CFT 短柱の最終破壊形状は,無補強 のそれと比較し,差異が認めらず,Photo.1 に示すように通常の角形 CFT 短柱と同様に^{例えば,5)},鋼管の螺旋状の局部座屈およびコンクリー トの局所的な破壊による鋼管板要素の膨張であった。

Fig.10に,繊維補強角形 CFT 短柱および無補強円形 CFT 短柱の最大 軸圧縮耐力で無次元化した圧縮耐力と試験体高さに対する軸圧縮変 形の関係を併せて示す。

同図より,繊維補強角形 CFT 短柱の最大圧縮耐力到達後の耐力低 下勾配および安定圧縮耐力は,それぞれ無補強円形 CFT 短柱のそれ とほとんど差異がないことが認められる。

6. おわりに

本論では、まず角形 CFT 短柱の安定圧縮耐力の評価式を提案した。 またその安定圧縮耐力を、角形 CFT 柱の安定曲げモーメントの算定 に適用することが可能かを、既往の実験データを活用して検討した。 さらに、高強度材料を使用した角形 CFT 柱の靭性改善を図ることを 目的として、鋼繊維補強を施した角形 CFT 短柱の圧縮靭性についても、 実験的に検討した。これらより得られた主な結果を次に示す。

- 1) 鋼管断面耐力比が同等の場合,降伏応力度が高いほど,安定圧縮耐力は低下する。これは,降伏応力度が高いほど一般化幅厚比が高くなり,鋼管が負担する軸圧縮耐力が局部座屈の影響で低下するためと考えられる。なお,安定圧縮耐力は,式(2),(3)で表すことができる。
- 2) 安定圧縮耐力,平面保持の仮定などを用いた計算モデルで,角 形 CFT 柱の安定曲げモーメントを算出した。その結果,安定曲げ モーメントの計算値は,実験値付近に存在し,かつ実験値と平行 であり,その傾向を表すことが判明した。ただし,高い軸力比およ び高い鋼管の降伏応力度では,変数 x_nが鋼管ウェブ(*B-2t*)内にある 全ての場合において,引張合力が圧縮合力より高く,軸力が釣り合わ ないため,安定曲げモーメントの解が得られない。これは,計算モデ ルが,前掲のFig.6に示すように,鋼管の引張断面の全領域を降伏応 力度と仮定していることが原因である。よって,高い軸力比および高 い降伏応力度では,定数βを小さくする必要がある。しかし,定数β と各種要因については不明であり,今後の検討課題である。
- 3) 鋼繊維補強による角形 CFT 短柱の圧縮靭性の改善が認められた。 今後は、安定曲げモーメントと軸方向変位^{例えば、34)}の関係、また それに及ぼす鋼繊維補強の影響について検討する予定である。

謝辞

本研究を進めるに当たり森野捷輔三重大学名誉教授,福井伸之氏(矢 作建設工業株式会社)に多大な御助力を頂きました。ここに記して感 謝致します。また,研究成果を引用させていただいた多くの文献著者 およびこの分野で研究活躍された先駆者の方々に敬意と感謝の意を表 します。

参考文献

- 1)藤本利昭,向井昭義,西山功,稲井栄一,甲斐誠,時野谷浩良,馬塲武志, 福元敏之,森浩二,崎野健治,森野捷輔:高強度材料を用いたコンクリー ト充てん鋼管柱の曲げせん断性状,日本建築学会構造系論文集,第509号, pp.167-174,1998.7
- 2) 徐培蓁,河野昭彦:柱降伏を許容した CFT ラーメン構造の動的安定性につい

て,日本建築学会構造系論文集,No.595, pp.139-144, 2005.9

- 3) 日本建築学会:コンクリート充填鋼管構造設計施工指針,第2版, 2008.10
- 4) Tsuiki, A., Kawaguchi, M., Fukao, H. and Morino, S.: Analysis of Cyclic Behavior of CFT Beam-Columns Failing in Local Buckling, Proceedings of the Fifth Pacific Structural Steel Conference, pp. 907-912, 1998.10
- 5) 山本貴正,川口淳,小池狭千朗,森野捷輔:コンクリート充填角形鋼管短 柱の軸圧縮特性に及ぼす断面寸法・形状の影響に関する実験的研究,日本 建築学会構造系論文集,No.685, pp.597-605, 2013.3
- 6) 林信之,田内敏昭,福元敏之,佐伯俊夫:高強度材料を用いたコンクリート充てん角形鋼管柱の軸圧縮性状,コンクリート工学年次論文報告集, Vol. 15, No. 2, pp. 977-982, 1993.6
- 7) 中原浩之, 蜷川利彦, 崎野健治:コンクリート充填鋼管柱の一定軸力下に おける繰返し曲げ性状, 日本建築学会構造系論文集, No. 568, pp. 139-146, 2003.6
- 8) 中原浩之,稲井栄一,崎野健治:コンクリート充填角形鋼管短柱の中心圧 縮耐力,構造工学論文集, Vol.44B, pp. 167-174, 1998.3
- 9) 中原浩之,崎野健治,稲井栄一:コンクリート充填角形鋼管柱の中心圧 縮性状のモデル化,コンクリート工学年次論文報告集,Vol.20,No.3, pp.817-822,1998.6
- 中原浩之,崎野健治:高強度材料を用いたコンクリート充填角形鋼管柱の 単調曲げ性状,日本建築学会構造系論文集,No.567,pp.181-188,2003.5
- 安部重孝,石井修,大島基義,井ノ上一博,沖本弘,梅国章:部分溶込み 溶接組立角形鋼管柱の弾塑性性状に関する実験的研究 その2,日本建築学 会大会学術講演梗概集,構造 II, pp. 877-878, 1988.10
- 12) Tomii, M., Yoshimura, K. and Morishita.: Experimental Studies on Concrete Filled Steel Tubular Stub Columns under Concentric Loading, International Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE, Washington, D. C., pp. 718-741, 1977.3
- 13) 上遠野明夫、山口種美、斎藤豊、山口育夫、松谷輝夫、松村弘道:充填型 鋼管コンクリート柱に関する研究 その1,2、日本建築学会大会学術講演 梗概集,構造 II, pp.1613-1616,1989.10
- 14) 田中清,狩野芳一,寺岡勝,佐々木聡:高強度コンクリートを用いた合成 短柱の中心圧縮性状,コンクリート工学年次論文報告集,Vol.12,No.2, pp.83-88,1990.6
- 15) 吉富宏紀,森野捷輔,川口淳:コンクリートを充てんした角形鋼管の応力 -ひずみ関係に関する実験的研究,日本建築学会大会学術講演梗概集,構造II,pp.1573-1574,1994.9
- 16) 小森淳,吉田英敏,荒木聡,山中久幸,小坂英之,小田稔: 充填鋼管コンクリート柱の力学的基本性質,日本建築学会大会学術講演梗概集,構造 II, pp. 1595-1596, 1994.9
- 17) 渡辺英義,竹崎真一,成原弘之,小林淳,渡辺征晃,中村敏治:コンクリート充填鋼管柱の構造性能に関する研究 その4,日本建築学会大会学術講演 梗概集,構造 III, pp.773-774, 1995.8
- 18) 高巣幸二,松井千秋,津田恵吾,畑戸龍夫,多賀章,今村輝武,吉野茂, 宮木聡: 圧縮力を受けるコンクリート充填角形鋼管の耐力と挙動,日本建 築学会大会学術講演梗概集,構造 III, pp. 779-780, 1995.8
- 19)藤本利昭,向井昭義,西山功,稲井栄一,甲斐誠,田中義成,時野谷浩良, 野口隆,馬塲武志,福本昇,村田義行,崎野健治,森野捷輔:高強度材料 を用いたコンクリート充てん鋼管短柱の軸圧縮特性,日本建築学会構造系 論文集,第498号,pp.161-168,1997.8
- 20) 宮城聡,松井千秋,畑田竜夫:遠心成形コンクリート充填鋼管柱の耐力・ 変形性能,日本建築学会構造系論文集,第500号,pp.105-112,1997.10
- 21) 松井千秋,津田惠吾,森武史:被覆形鋼管コンクリート柱材における鋼管の幅厚比・径厚比の制限値,日本建築学会構造系論文集,第503号, pp.157-163,1998.1
- 22) 中原浩之,崎野健治:高強度コンクリートを用いたコンクリート充填角 形鋼管短柱の中心圧縮実験,日本建築学会大会学術講演梗概集,構造 II, pp. 1131-1132, 1998.9
- 23) Yamamoto, T., Kawaguchi, J. and Morino, S.: Experimental Study of Scale Effects on the Compressive Behavior of Short Concrete-Filled Steel Tube Columns, Composite Construction in Steel and Concrete IV, ASCE, pp. 879-890, 2001.3-4.
- 24) 高木潤一,管田裕樹,山口育雄,諸菱亮太:長方形断面 CFT の中心圧縮 性状に関する実験的研究,日本建築学会大会学術講演梗概集,構造 II,

pp.1103-1106, 2001.7

- 25) 北風野歩, 菅野俊介, 木村秀樹, 片桐誠: 超々高強度コンクリートを 用いた柱の圧縮特性に関する実験的研究, コンクリート工学年次論文集, Vol.25, No.2, pp.847-852, 2003.7
- 26) 雨宮篤, 野口博: 超高強度鉄筋コンクリート部材の有限要素解析プ ログラムの開発 その1,日本建築学会大会学術講演梗概集,構造 II, pp. 639-640, 1990.10
- 27) 藤本利昭,向井昭義,西山功,野口隆,馬塲武志,崎野健治,森野捷輔: 高強度材料を用いたコンクリート充てん角形鋼管短柱の偏心圧縮実験,日本建築学会構造系論文集,第501号,pp.173-180,1997.11
- 28) 藤永隆,三谷勲,津田惠吾:角形CFT柱の繰返し挙動と単調挙動の比較, 構造工学論文集, Vol. 52B, pp. 395-399, 2006.3
- 29) Kawaguchi, J. and Morino, S.: Experimental Study on Post-Local Buckling Behavior of CFT Beam-Columns under Cyclic Loading : Elasto-plastic behavior of square CFT beam-columns Part 1, 日本建築 学会構造系論文集, 第 540 号, pp.141-148, 2001.2
- 30) 渥美博,森野捷輔,川口淳:コンクリート充てん角形鋼管柱の局部座屈後の耐力劣化性状に関する実験的研究 その2,日本建築学会大会学術講演梗 概集,構造 II, pp. 1807-1088, 1992.9
- 31) 松井千秋,東野良之,尾崎功:高張力鋼を用いた中空及びコンクリート充 填角形鋼管柱の耐力と変形能力に関する研究,日本建築学会九州支部研究 報告集,第33号,pp.357-360,1992.3
- 32) 中村豪,藤永隆,三谷勲,大谷恭弘:角形 CFT 柱の復元力特性に関する研究, コンクリート工学論文集, Vol. 14, No. 2, pp. 31-41, 2003.5
- 33) Amit, H. V., James, M. R. Richard, S. and Lu, L. W.: Seismic Behavior and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns, Journal of Structural Engineering, ASCE, pp. 169-179, 2004.2
- 34) 松井千秋,津田惠吾,山地雄二郎,藤永隆:コンクリート充填角形鋼 管柱の構造性能と軸力制限値,日本建築学会構造系論文集,第504号, pp.103-110,1998.2

注

- 注1) 昨今, CFT 柱構造に超高張力鋼および超高強度コンクートが使用されつつある。これら超高強度材料を用いた CFT 柱は,鋼管とコンクリートの各強度の組み合わせによっては,低靭性になることがある。また,正方形(以下,角形)断面の CFT 柱の靱性は,円形のそれより低い傾向が認められている^{例えば,1)}。
- 注2) 単調軸圧縮を受ける角形 CFT 短柱は、耐力低下後にある程度変形が進む と、コンクリートの局所的な破壊による鋼管板要素の膨張で、鋼管断面が、 一様に拘束圧が作用する円形のように変形し、その後、再び耐力が上昇す ることがある。そこで、Table 1の標本は、Fig.A1(a)のように最小圧縮耐 力が認められる耐力 - 変形関係を示す試験体としている。また、耐力上昇 後、大変形時において、再び耐力低下する試験体は、Fig.A1(a)に示すよ

うに、最初の谷を最小圧縮耐力としている。なお、Fig.A1(b) に示すように、 緩やかに耐力が低下し続ける試験体は、最小圧縮耐力が認められないため、 標本としていない。これは、鋼管の幅厚比が小さく、コンクリートの耐力 再上昇が表れにくい、または再び耐力が上昇する前に圧縮試験を終了して いると考えられるためである。

- 注 3) Fig.2 に示すように、安定圧縮耐力に対して、降伏応力度が影響する。そ こで、抽出した標本を降伏応力度の大きさで3分割している。なお、その 内訳は、STKR400 クラス、STKR490 クラス、および左記以上の高張力鋼管で ある。
- 注 4) 中原ら¹⁰⁾は、角形 CFT 短柱の一般化幅厚比およびコンクリートの圧縮 強度が高いほど、等曲げモーメント - 無次元化曲率関係の靭性が低下する 実験結果を得ている。
- 注 5) 式 (4), (5) の定数 S, rは,下式で計算する。 $S = E_{s} \cdot \xi / \sigma_{y} \quad r = E_{c} \cdot \xi / \sigma_{B} \quad (A.1)$ $\xi = N_{stab} / (A_{s} \cdot E_{s} + A_{c} \cdot E_{c})$ case S > 1.0 : S = 1.0, r = (N_{stab} - A_{s} \cdot \sigma_{y}) / (A_{c} \cdot \sigma_{B})
 case r > 1.0 : r = 1.0, S = (N_{stab} - A_{c} \cdot \sigma_{B}) / (A_{s} \cdot \sigma_{y})
- 注 6) 安定曲げモーメントの解が得られる軸力比の最大値と鋼管断面耐力比の関係 に及ぼす鋼管の降伏応力度の影響について、その一例をFig. A2に示す。なお、 同一降伏応力度において、この関係に及ぼす幅厚比およびコンクリートの 圧縮強度の影響は、ほとんど認められない。
- 注7) 北風野らは²⁵⁾, 鋼繊維混入率2%および鋼管断面力比 0.31の角形 CFT 短柱の圧縮試験を実施し,最大圧縮耐力に対する安定圧縮耐力は,繊維補 強の有・無により,それぞれ 0.60 および 0.55 程度を得ている。

Fig.A2 Maximum of N_{const} / N_0 for Obtaining a Solution of M_{stab}

STABILIZED COMPRESSIVE STRENGTH UNDER PLASTIC DEFORMATION OF CONCRETE FILLED SQUARE STEEL TUBE SHORT COLUMNS

Takamasa YAMAMOTO*, Jun KAWAGUCHI** and Kazuo YAMADA***

* Assoc. Prof., Dept. of Architecture, Toyota National College of Technology, Dr. Eng. Assoc. Prof., Graduate School of Engineering, Mie University, Dr. Eng. *** Prof., Dept. of Architecture, Faculty of Engineering, Aichi Institute of Technology, Dr. Eng.

1. Preface

The authors estimated the deteriorated compressive strength of concrete filled square steel tube (square CFT) short columns after maximum strength attained, which is defined as the stabilized compressive strength (N_{stab}) . Next, the stabilized bending moment (M_{stab}) of square CFT columns were calculated by use of N_{stab} . Compression tests of high strength square CFT short columns using steel fibered concrete (FR-CFT) were also carried out, in order to investigate improvement in the compressive ductility.

2. Square CFT specimens investigated

Square CFT specimens investigated are as follows: i) compressive load applied on both steel and concrete simultaneously, ii) no shear connector on the inner surface of steel tube, iii) no use of expandable admixture in concrete, iv) no void portion and no steel portion in concrete, v) no built-up box section, vi) within the limit of width-thickness ratio proposed by recommendations for design and construction of concrete filled steel tubular structures³⁾.

3. Stabilized compressive strength

The stabilized compressive strength (N_{stab}) over N_0 tends to decrease as the yield strength of steel tube (N_{sv}) over N_0 decreases; this becomes more obvious as the yield stress of steel tube increases (Fig.2). The reason is that the compressive load carried by higher-strength steel tube tends to decrease due to local buckling, because of larger generalized width-thickness ratio $[B/t(\sigma_{v}/E_{s})^{0.5}]$. Its N_{stab} can be calculated by using Eqs.(2) and (3). The standard deviation of calculated N_{stab} over experimental ones is 0.101 (Fig.4).

4. Stabilized bending moment

The stabilized bending moment (M_{stab}) was calculated using N_{stab} , based on assumed stress distributions in concrete and steel⁹⁾ under the stabilized stress state, and Bernouli-Euller's hypothesis (Fig.6). This calculation is based on ultimate bending moment expression⁹⁾. This formulae are shown in Eqs.(4) and (5). The calculated M_{stab} show good agreement with experimental maximum bending moment of final cycle (Fig.7). However it is not applicable to calculate the stabilized bending moment under higher axial load, because we assume that σ_y is uniformly distributed along the tensile part of cross-section.

5. Fiber Reinforced Square CFT Short Columns

The square FR-CFT which contain 4.0% (in volume) steel fiber was produced. The length of steel fiber is 40mm, and its diameter is 0.8 mm. We carried out compressive test of its square FR-CFT, normal square CFT and circular CFT short columns. The axial compressive ductility of square FR-CFT short columns is higher than normal square CFT short columns (Fig.9), and it might be even higher than the ductility of un-reinforced circular CFT short columns (Fig.10).

6. Conclusion

The estimations of stabilized compressive strength (N_{stab}) and stabilized bending moment (M_{stab}) were proposed according to the intermission analysis. The proposed estimation showed the good agreement to the results of former experiments. The improvement in compressive ductility was also confirmed by tests of square FR-CFT short columns.

(2014年9月5日原稿受理, 2015年2月27日採用決定)