地震により被災した鋼製橋脚の 早期復旧のための修復方法に関する研究

2015年9月

嶋口 儀之

目次

甮	第1章	序論																												
	1.1 ま	えがき	•	• •	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• 1
	1.2 既	往の研	究	• •		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 2
	1.4 本	論文の	目自	約·			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 4
	1.4 本	論文の	構	戎・		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 4
甮	92章	損傷し	た	鋼	製材	喬朋	却0	り作	多後	夏に	こ月	月一	す冫	3	基	本	的	な	考	え	方									
	2.1 ま	えがき	•	•	• •	• •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 9
	2.2 地	1震発生	三後	のう	対り	応し		おり	け	37	本	研	究	の	位	置	付	トけ	F •	•	•	•		•	•				•	• 9
	2.3 円	形断面	ī鋼	製材	喬儿	却の	の打	員俊	傷り	犬沙	えん	こ	- 関	す	る	検	討	•	•	•	•	•	•	•	•	•	•	•	•	10
	2.3.1	対象と	:す	る	鋼	製	僑朋	却な	の打	傊僋	复	伏	況	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	2.3.2	損傷周	き合	に	よ	る	分类	領	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	2.3.3	損傷	を有	īす	る	供	試	体	の	製	作	:*	31	こて	КФ	乎利	尓	•	•	•	•	•	•	•	•	•	•	•	•	13
	2.4 解	析的検	計に	こよ	る	修	復	後	の	E	標	性	能	\mathcal{T}) 設	, と 定		•	•	•	•	•	•	•	•	•	•	•	•	13
	2.4.1	修復後	その	耐	震	性	能	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	2.4.2	解析プ	~ 7法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	2.1.2	解析《	下四	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	2.1.5	解析統	吉果	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
	2.1.1	耐電が	」 と 能	ற	日才	尰	宿 (わ言	没?	눈	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
	2.4.5 25 ±	いた・	•	•	• 1	ا ا ترا	• •	/ / H				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2- 24
	2.5 &																													27
曶	至3音	大きく	指	復	1.7	<i>t</i> ≁ F	피귀	钐脒	乐译	īá	罰售	过术	蚕	期	17 -	斗,	よ	Z'	笛	便	tr,	修	復	古		の	提	宏		
21	フリー 31 主	えがき	•	•	•	•	• •		•	ᆈᄳ	n 4	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	3.1 a 3.2 宝	、 論計面	ī.	•	•	•						•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	3.2 入	宝驗伯	, 上計	休	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	3 2 2	人気が	枟埍	作	₩-3	沪	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	3.2.2		」員 7]]		い し よ	ルロ - 赤 十	すり	-	トン	51	冬谷	有	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
	3.2.5	细板类	・ そキ	<u></u>	τ) 1.7	会 (トン	 7 1	ム (タイ	ショ	•	叉 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
	3.2.4	」 述 岡 小 次 ~	* C オル	<u>.</u> F		修正。	よう	ູ •	•	欠 •																				25
	3.2.5	宙陸事	小に	より	ら」 器	•	· 2	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
	3.2.0	大欧軍	以何	衣	追. ト・	7 16 1	次 1		1/2 3	7	÷ ₽ 1	£-	-	亦	占	۔ س	皆	;=			•	•	•	•	•	•	•	-	•	27
	3.2.1	≌□□□1	ᅨ里	₹J	ъ	•	∙∓ୀ •	八/	- 1	, 1	비 -	±.,	•	反	」 <u>ル</u>	•	ᅏ		•		•	•	•	•	•	•	•	-		20
	- リ.リ 天	: 刘大 小口 木	<	-	-	-							-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ップ

	3.3.1	水平	荷	重-;	水斗	区変	ど位	ΣĘ	仔	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
	3.3.2	包絡	線	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
	3.3.3	供試	体	損傷	 影状	、況	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	47
	3.3.4	最大	大才	k平	荷	重	お	よう	び	曲≀	げ	劅忄	生	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51
	3.3.5	塑性	率	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53
3	3.4 ま	とめ	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	55

第4章 損傷度合が異なる円形断面鋼製橋脚に対する

コンクリート充填修復と耐震性能

4.1	ま	えがき	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
4.2	実	験計画	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
4.2	2.1	実験の) 涙	わ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
4.2	2.2	実験俳	た計	《体	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
4.2	2.3	損傷レ	~~	ミル	の	定	義	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60
4.2	2.4	コンク	, IJ	I	ト	充	填	修	復	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60
4.2	2.5	実験装	È厝	むお	よ	び	実	験	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
4.2	2.6	ひずみ	ショ	則定	≦付	乙置		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
4.3	実	験結果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
4.3	8.1	局部座	屈	部(ので	U-	ずる	みん	直。	とま	傊僋	复	レ・	べり	レロ	の	靷亻	系	•	• •	• •	•	•	•	•	•	•	•	•	62
4.3	3.2	供試体	ΣØ	〕損	傷	状	況	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	64
4.3	3.3	水平荷	ī重	[-水	く平	乙変	き位	履	团	₹⊞	部	Į•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	67
4.3	3.4	損傷レ	~~	ミル	お	よ	び	修	復	方	法	の	関	係	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	70
4.4	修	復方法	の	評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	72
4.4	I .1	最大才	く平	乙荷	重	お	よ	び	剛	性	に	よ	る	評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	72
4.4	1.1	塑性率	まに	こよ	る	評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	73
4.5	ま	とめ・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	76

第5章 径厚比および損傷度合が異なる円形断面鋼製橋脚に対する

														11	レン	ク	IJ		\mathbb{P}	充	填	修	復	と	耐	震	性	能			
5.1	ま	えカ	ゞき	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
5.2	実	験言	十画	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
5.2	2.1	実	険の	流	れ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
5.2	2.2	実题	険供	試	体	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	79
5.2	2.3]	ンク	IJ	-	\mathbb{P}	充	填	修	復	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	80
5.2	2.4	実	潊装	置	お	よ	び	載	荷	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81

5.3 実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 82
5.3.1 供試体損傷状況・・・・・・・・・・・・・・・・・・・・・・	• 82
5.3.2 水平荷重-水平変位履歴曲線・・・・・・・・・・・・・・・・	• 84
5.3.3 径厚比パラメータの違いによる比較・・・・・・・・・・・	• 87
5.4 ひずみ値の分布と損傷状況・・・・・・・・・・・・・・・・・・	• 90
5.5 修復方法および損傷形態についての評価・・・・・・・・・・	• 94
5.6 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 95
第 6 章 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 97
謝辞・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
本論文に関する発表論文・口頭発表・・・・・・・・・・・・・・・	101

第1章 序論

1.1 まえがき

鋼製橋脚は市街地の高架高速道路や鉄道などの重要度の高い公共構造物に多用 されている.これらの構造物は一般に直列リンク構造であることが多く、地震によ り一部の橋脚が損傷を受けると、構造物全体の機能損失につながる.また、高速道 路は地震発生後の緊急輸送道路として位置づけられており、このような構造物の機 能を確保することは、地震後の復旧活動を進める上で極めて重要である.

平成7年1月17日に発生した兵庫県南部地震は、それまでの耐震設計において 想定されていた地震動を上回る大規模地震であり、鋼製橋脚を含む多くの土木構造 物が被害を受けた.都市におけるライフラインである主要幹線道路が長期間使用不 能になり、救助および災害復旧活動の妨げとなった.また、地震後の復旧作業では、 橋脚の修復方法に関する指針が無く、比較的軽微な損傷であっても部分的な補修で は復旧できず、撤去後に再構築した場合が少なくなかった.そのため、阪神高速道 路神戸線では全線開通までに1年9ヶ月を要した^{1),2)}.

兵庫県南部地震における道路橋の甚大な被害を受け,鋼製橋脚の耐震性能に関す る研究が精力的に行われ,耐震設計基準に反映されてきた.平成2年改訂の道路橋 示方書の耐震設計編においては,鉄筋コンクリート橋脚については地震時保有水平 耐力による照査法が規定されていたが,鋼製橋脚については耐震設計に関する基礎 的資料が不十分であるということから基準化がなされていなかった³⁾.しかし,兵 庫県南部地震後の平成8年の改訂では,コンクリートが充填された鋼製橋脚に対し ても地震時保有水平耐力による照査法を規定することとなり,設計時に考慮すべき 地震動に兵庫県南部地震が追加された⁴⁾.平成14年の改訂においては性能規定型 の技術基準を目指して,要求性能の規定の明確化がなされ,橋の供用期間中に発生 する確率が高い地震動(レベル1地震動)に加え,発生する確率は低いが大きな強度 の地震動(レベル2地震動)に対する耐震性能の照査に関する研究成果が反映された ⁵⁾.平成24年の改訂においては,将来予想される東海,東南海,南海地震を考慮す るためにレベル2地震動の見直しが行われた⁶⁾.

ここで,現在規定されている橋の耐震性能の観点について詳しく見てみると,レベル1地震動に対しては,「地震によって橋としての健全性を損なわない性能(耐震性能1)」を確保することとし,修復性については短期的には機能回復のための修復を必要とせず,長期的にも軽微な修復で対応できることとしている.レベル2地震動に対しては橋の重要度に応じて規定されており,特に重要度の高い橋については,確保すべき性能を「地震による損傷が限定的なものに留まり,橋としての機能の回

復が速やかに行い得る性能(耐震性能 2)」としている.また,地震後の機能回復が 応急修復程度で速やかに対応でき,長期的な修復も比較的容易に可能であることと している.一方で,標準的な重要度の橋については,「地震による損傷が橋として 致命的とならない性能(耐震性能 3)」,すなわち落橋に対する安全性を確保すること とされている.以上のように,現在の耐震設計においては地震による局所的な損傷 は想定されており,修復性についても言及されているが,修復のための具体的な指 針は定められていないのが現状である.地震後の復旧活動における緊急輸送道路と しての機能確保に加え,本震後に発生が予想される大規模な余震および連動地震に 対応するためには,地震により鋼製橋脚に致命的な損傷を生じさせないとともに, 損傷した橋脚に対して,地震発生後極めて早期に修復作業を行うことが求められる. このような迅速かつ効果的な修復を行うためには,地震後の初動対応において,鋼 製橋脚の点検作業を進める上での重要点検個所,損傷度合の判定基準および鋼製橋 脚の損傷状況や構造パラメータに適した修復方法についての作業指針を定めるこ とが重要である.

本論文は円形断面鋼製橋脚が地震により損傷した場合の修復方法の提案を目的 として,異なる損傷度合および構造パラメータを想定し,修復方法と修復後の耐震 性能についての検討を行ったものである.

1.2 既往の研究

鋼製橋脚は都市内高速道路などに多く採用されており,これまでに鋼製橋脚の耐 震設計に関する研究が数多く行われてきた.平成2年改訂の道路橋示方書において 鋼製橋脚の地震時保有水平耐力の照査に関する規定が見送られたことを受け,鋼製 橋脚の静的繰り返し荷重および動的荷重下における弾塑性挙動に関する実験的お よび解析的研究が精力的に進められるようになった.土木学会鋼構造委員会鋼構造 新技術小委員会では,宇佐美,家村,後藤,北田,杉浦,伊藤らをはじめとして多 くの研究者により,鋼製橋脚の縮小モデルを用いた一定軸力下での水平繰り返し載 荷実験,ハイブリッド地震応答実験および動的地震応答解析などが行われ,その成 果が報告されている⁷⁾.また,平成7年に発生した兵庫県南部地震において鋼製橋 脚に多くの被害が生じたことを受け,以降は鋼製橋脚の耐震性能向上に加え,既存 の鋼製橋脚に対する補強方法に関する研究がさらに精力的に進められてきた.

宇佐美らは,矩形断面鋼製橋脚を対象に数多くの単調載荷および繰り返し載荷実 験を行い,幅厚比パラメータ,細長比パラメータおよび補剛材剛比といった主要な パラメータや荷重履歴が鋼製橋脚の耐震性能に与える影響について検討している ⁸⁾⁻¹⁴⁾.渡辺,杉浦らにより鋼製橋脚の断面形状が変形性能に与える影響について検

討している^{15),16)}.また,宇佐美らはハイブリッド地震応答実験により鋼製橋脚に 地震動を与えた場合の挙動について検討している^{17),18)}.さらに近年では後藤ら, 杉浦ら,青木らにより,地震の2方向あるいは3方向成分の影響を考慮した実験お よび解析的検討が行われている^{19)~25)}.

また、宇佐美ら、前野ら、中井、北田らは、鋼製橋脚の耐力および変形性能を向 上させるための方法として、コンクリートを部分的に充填した鋼製橋脚に着目し、 その耐震性能に関して実験および解析的検討が行われている^{26)~30)}. この中で宇佐 美らはコンクリートを最適充填率の高さまで充填することで変形性能が大きく向 上することを示しており、また、ダイアフラムの高さまで充填することで耐力が大 きく増加することを示している. 円形断面鋼製橋脚については森下ら、井浦らによ り、コンクリートを部分的に充填した円形断面鋼製橋脚の耐震性能に関する研究が 行われており、コンクリート充填高さおよびダイアフラムの有無が橋脚の耐力、変 形性能および損傷の発生個所に与える影響について明らかにされている^{31),32)}.

ところで、兵庫県南部地震の被害を受け、各地の都市高速道路に使用されている 既設の鋼製橋脚について耐震補強工事が施され、その多くにコンクリート充填工法、 あるいは縦補剛材を補剛・増設する工法が採用されている³³⁾.しかしながらコンク リート充填工法は、柱部材の耐荷力が大きく増加することにより、アンカー部など の耐荷力を上回り、橋脚の基礎部分に損傷が集中するような好ましくない損傷形態 となることも予想される.また、縦補剛材の補剛・増設工法についても必要な材料 および作業量が多く、断面の小さな鋼製橋脚への適用が困難であることが指摘され ている^{34),35)}.

これらを受けて、北田らは無充填区間を設けてコンクリートを充填することで、 耐荷力の大幅な増加を抑えつつ、変形性能を向上させ、損傷形態についてもある程 度コントロールできるような補強方法を提案している³⁶⁾.また、忠らは鋼板貼り付 けによる鋼製橋脚の耐震補強法を提案しており、鋼板を貼り付けないヒューズ区間 を設けることで、耐荷力の大幅な増加を抑制しつつ、変形性能の向上を図っている ³⁷⁾.また、松村、北田らは耐荷力の大幅な増加を伴わない耐震補強工法として、炭 素繊維シートを用いた補強工法を提案している³⁸⁾.

以上のように,既設および新設の鋼製橋脚に対する耐震性能の向上のための検討 は数多く行われている.しかしながら,地震により損傷した鋼製橋脚に対する修復 方法および修復後の耐震性能に関する研究は非常に少ないのが現状である.その中 で例えば,金,廣畑らは局部座屈が生じた鋼構造物を対象として,加熱/プレス矯 正による修復が部材の強度等に与える影響について明らかにしている^{39),40)}.愛知 工業大学においては平成8年度から鈴木,青木らにより,地震により損傷した鋼製 橋脚の修復に関する研究が進められてきた⁴¹⁾⁻⁴⁴⁾.これらの研究により,損傷した

鋼製橋脚に対して,種々の修復方法が提案され,修復後の耐震性能について実験的 に明らかにされてきた.鈴木らは円形断面鋼製橋脚を対象に,鋼板巻き立ておよび 補剛材の溶接による修復について検討した.また,尾松らは矩形断面鋼製橋脚を対 象に,コンクリート充填,鋼板巻き立ておよび補剛材の溶接による修復について検 討した.この中で,コンクリート充填および鋼板巻き立てによる修復が,有効な手 法となる可能性があることが示された.しかし,これらの研究では,修復箇所の強 度が大幅に増加し,別の箇所に新たに損傷が生じるケースや,修復方法が複雑で施 工に時間がかかるケースも見られた.また,対象とする鋼製橋脚の損傷度合および 構造パラメータの影響に関しての検討は行われておらず,実橋脚に適用するために は,さらなる検討が必要である.

1.3 本論文の目的

前述のように,新設および損傷のない既設の鋼製橋脚の耐震性能に関する研究が 精力的に行われてきたのに対し,地震により損傷した鋼製橋脚の修復に関する研究 は十分ではなく,地震後の復旧活動における鋼製橋脚の修復方法についての具体的 な指針は定められていない.以上のことをふまえ,本研究では円形断面鋼製橋脚を 対象として,地震により損傷を受けた場合の早期の応急復旧が可能な修復方法を提 案することを目的とする.

はじめに,修復後の耐震性能を評価するために,具体的な耐震性能の目標値を設 定するための解析的検討を行う.次に,高速道路の早期の機能回復および余震への 対応を考慮し,簡便な手法による修復方法を考案する.また,実橋脚への適用を視 野に,対象とする円形断面鋼製橋脚の損傷度合および径厚比が異なる場合について 検討し.それぞれについて効果的な修復方法を提案する.

1.4 本論文の構成

第1章では,道路橋示方書に示されている設計基準における,橋脚の耐震性能お よび修復性に関する規定について述べた.さらに,鋼製橋脚の耐震設計および補強 に関する既往の研究について紹介し,本研究の目的と構成について述べた.

第2章では、地震により損傷した鋼製橋脚に対する修復を行う上での、本研究に おける基本的な考え方、修復後の耐震性能および対象とする鋼製橋脚の損傷度合に ついて述べる.本章では、鋼製橋脚の損傷度合ごとに分類し、評価するために、鋼 製橋脚の水平耐力-変位関係を基に損傷レベルを設定した.さらに、修復後の鋼製 橋脚の耐震性能および損傷形態について検討し,最大耐力および剛性をパラメータ としてバイリニアモデルを用いた地震応答解析を行うことにより,修復後の耐震性 能の目標値を設定した.

第3章では,損傷した円形断面鋼製橋脚を対象とした効果的な修復方法の検討お よび修復後の円形断面鋼製橋脚の静的繰り返し載荷実験について述べる.本章では 過去の研究における繰り返し載荷実験により,基部付近に局部座屈が生じた円形断 面鋼製橋脚を対象として,コンクリート充填,鋼板巻き立ておよび補剛材の溶接に よる修復を行おこなった.その後,再度繰り返し載荷実験を行うことで修復後の鋼 製橋脚の耐震性能を明らかにし,コンクリート充填修復が簡便かつ効果的な修復方 法であることを示した.

第4章では,損傷度合の異なる円形断面鋼製橋脚を対象としたコンクリート充填 修復の修復効果に関する実験的検討を行った.第2章で設定した損傷レベルを基に, 静的繰り返し載荷により3段階の異なる損傷を供試体に与え,各損傷レベルに対し てコンクリート充填高さおよびダイアフラムの有無を変えて修復を行う.その後, 同様の繰り返し載荷を行い,各損傷レベルにおける修復効果の違いについて明らか にした.

第5章では,径厚比パラメータの異なる円形断面鋼製橋脚を対象としたコンクリート充填修復の修復効果に関する実験的検討について述べる.現行の設計基準の適 用範囲内で3種類の径厚比パラメータを有する円形断面鋼製橋脚を用いて,コンク リート充填高さおよびダイアフラムの有無を変えて修復を行うことで,径厚比パラ メータおよび修復方法の違いによる修復後の耐震性能について明らかにした.また, 適切な修復方法を判断するための資料の提供を目的として,修復後の円形断面鋼製 橋脚のひずみレベルに着目し,修復後の損傷形態との関係について示した.

第6章では、各章で得られた研究成果についてまとめる.

参考文献

- 1) 阪神高速道路公団:大震災に立ち向かって-阪神. 淡路大震災記録書, 1996.1.
- 阪神高速道路管理技術センター:大震災を乗り越えて-震災復旧工事誌-,阪 神高速道路公団,1997.9.
- 3) (社)日本道路協会:道路橋示方書·同解説 V 耐震設計編, 1990.2.
- 4) (社)日本道路協会:道路橋示方書・同解説 V 耐震設計編, 1996.12.
- 5) (社)日本道路協会:道路橋示方書·同解説 V 耐震設計編, 2002.3.
- 6) (社)日本道路協会:道路橋示方書・同解説 V 耐震設計編, 2012.3.
- 7) 土木学会鋼構造新技術小委員会:鋼構造新技術小委員会最終報告書(耐震設計研究), 1996.
- 客) 宇佐美勉:鋼平面ラーメン構造物の極限強度評価式の実験データによる検証, 構造工学論文集, Vol.36A, pp.79-88, 1990.3.
- 9) 宇佐美勉,今井康幸,青木徹彦,伊藤義人:繰り返し荷重を受ける鋼圧縮部材の強度と変形能に関する実験的研究,Vol.37A, pp.121-134, 1991.3.
- 10) 宇佐美勉,水谷慎吾,青木徹彦,伊藤義人,安波博道:補剛箱形断面圧縮部材の繰り返し弾塑性挙動に関する実験的研究,構造工学論文集, Vol.38A, pp.105-117, 1992.3.
- 11) 宇佐美勉,坂野茂,是津文章,青木徹彦:鋼製橋脚モデルの繰り返し弾塑性挙動に及ぼす荷重履歴の影響,構造工学論文集,Vol.39A,pp.235-247,1993.3.
- 12) 鈴木森晶,宇佐美勉,竹本潔史:鋼製橋脚モデルの静的および準静的挙動に関する実験的研究,土木学会論文集,No.507/I-30,pp.99-108,1995.1.
- 13) 葛漢彬,宇佐美勉,織田博孝:局部座屈を考慮した無補剛箱型断面短柱のモーメントー軸カー曲率関係の定式化,土木学会論文集,No.519/I-32, pp.79-87, 1995.7.
- 14)水谷慎吾,宇佐美勉,青木徹彦,伊藤義人,岡本隆:パイプ断面鋼圧縮部材の 繰り返し弾塑性挙動に関する実験的研究,構造工学論文集,Vol.42A,pp.105-114, 1996.3.
- 15) 渡邊英一,杉浦邦征,播本章一,長谷川敏之:ダクティリティに基づく鋼製橋 脚の有効な断面形状に関する実験的研究,構造工学論文集,Vol.38A,pp.133-142, 1992.3.
- 16) 渡邊英一,杉浦邦征,森忠彦,鈴木巌:補剛R付き箱型断面短はり-柱の強度 と変形性能,構造工学論文集,Vol.38A, pp.143-154, 1992.3.
- 17) 才塚邦宏,伊藤義人,木曽英滋,宇佐美勉:相似則を考慮したハイブリッド地 震応答実験手法に関する考察,土木学会論文集,No.507/I-30,pp.179-190,1995.1.

- 18) 才塚邦宏,宇佐美勉,芳崎一也,鈴木森晶:兵庫県南部地震観測地震波を用いたハイブリッド地震応答実験による鋼製橋脚の激震時挙動,土木学会論文集, No.556/I-38,pp.119-129, 1997.1.
- 19) 永田和寿, 渡邊英一, 杉浦邦征: 平2方向に地震力を受ける角形鋼製橋脚の弾 塑性応答性状に関する研究,構造工学論文集, Vol.50A, pp.1427-1436, 2004.3.
- 20) 後藤芳顯, 江坤生, 小畑誠: 2 方向繰り返し荷重を受ける薄肉円形断面鋼製橋脚 柱の履歴特性, 土木学会論文集, No.780/I-70,pp.181-198,2005.
- 21) 永田和寿, 丸山貴史, 杉浦邦征, 後藤芳顯:水平2方向の連成を考慮した鋼製 橋脚の地震時弾塑性応答解析手法の開発, Vol.53A, pp.360-370, 2007.3.
- 22) 後藤芳顯, 江坤生, 小畑誠: 2 方向繰り返し荷重を受ける矩形断面鋼製橋脚柱の 履歴特性, 土木学会論文集 A, Vol.63,No.1,pp.122-141,2007.
- 23) 青木徹彦,大西哲広,鈴木森晶:水平2方向荷重を受ける正方形断面鋼製橋脚の耐震性能に関する実験的研究,土木学会論文集 A, Vol.63,No.4,pp.716-726,2007.
- 24)後藤芳顯,村木正幸,海老澤健正:2 方向地震動を受ける円形断面鋼製橋脚の 限界値と動的耐震照査法に関する考察,構造工学論文集,Vol.55A, pp.629-642, 2009.3.
- 25) 後藤芳顯,海老澤健正:3方向地震動を受ける正方形断面鋼製橋脚の限界状態の評価法,構造工学論文集,Vol.58A, pp.399-412, 2012.3.
- 26) 中井博,北田俊行,吉川紀,中西克佳,尾山達巳:コンクリートを充填した長 方形箱形断面柱の耐荷力と変形性能に関する実験的研究,構造工学論文集, Vol.39A, pp.1347-1360, 1993.3.
- 27) 宇佐美勉,鈴木森晶, Iraj H. P. Mamaghani, 葛漢彬: コンクリートを部分的に 充填した鋼製橋脚の地震時保有水平耐力照査法の提案,土木学会論文集, No.525/I-33,pp.69-82,1995.10.
- 28) 天野麻衣, 葛西昭, 宇佐美勉, 葛漢彬, 岡本真悟, 前野裕文: コンクリート部 分充填鋼製橋脚の弾塑性挙動に関する実験的及び解析的研究,構造工学論文集, Vol.44A, pp.179-188, 1998.3.
- 29) 前野裕文,森下宣明,葛漢彬,青木徹彦,高野光史,吉光友雄:コンクリート を柱基部に部分充填した長方形断面鋼製橋脚の耐震照査法,構造工学論文集, Vol.48A, pp.667-674, 2002.3.
- 30) 才塚邦宏,宇佐美勉,木曽英滋,伊藤義人:コンクリートを部分的に充填した 鋼製橋脚のハイブリッド地震応答実験,構造工学論文集,Vol.41A, pp.277-288, 1995.3.

- 31) 森下益臣,青木徹彦,鈴木森晶:コンクリート充填円形鋼管柱の耐震性能に関 する実験的研究,構造工学論文集, Vol.46A, pp.73-83, 2000.3.
- 32) 井浦雅司, 折野明宏, 石澤俊希: コンクリートを部分充填した円形鋼製橋脚の 弾塑性挙動に関する研究, 土木学会論文集, No.696/I-58, pp.285-298, 2002.
- 33) 名古屋高速道路公社:名古屋高速道路耐震補強工事誌, 2007.8.
- 34) 西川和廣,山本悟司,名取暢,寺尾圭史,安波博道,寺田昌弘:既設鋼製橋脚の耐震性能改善方法に関する実験的研究,構造工学論文集,Vol.42A,pp.975-986, 1996.3.
- 35) 北田 俊行,中井 博,松村 政秀,加賀山 泰一:繰返し漸増水平変位載荷による既設鋼製橋脚補剛板の耐震補強法に関する実験的研究,構造工学論文集, Vol.46A, pp.127-134, 2000.3.
- 36) 松村政秀,北田俊行,澤登善誠,中原嘉郎:無充填区間を有するコンクリート 充填工法による既設鋼製橋脚の耐震補強法に関する実験的研究,構造工学論文 集, Vol.47A, pp.35-44, 2001.3.
- 37) 忠和男, 櫻井孝昌: 既設円筒鋼製橋脚の鋼板貼り付けによる耐震補強法, 構造 工学論文集, Vol.49A, pp.139-144, 2003.3.
- 38) 松村政秀,北田俊行,徳林宗孝,池田啓士,岡田崇:炭素繊維シートを円周方 向に貼付する橋脚鋼管柱の耐震補強法に関する実験的研究,土木学会論文集, No.766/I-68, pp.17-31, 2004.7.
- 39) 金裕哲,廣畑幹人,森本拓世,小野潔:局部座屈損傷部を加熱/プレス矯正した 鋼製橋脚の力学挙動,構造工学論文集,Vol.54A, pp.504-511, 2008.3.
- 40) 廣畑幹人,森本拓世,金裕哲:加熱/プレス矯正した鋼構造部材の力学挙動の解 明と補修法の提案,応用力学論文集,No.12, pp.915-926, 2009.
- 41) 青木徹彦,山田将樹,林幸司:地震時破損後に補修した橋脚モデルの耐震載荷 実験と耐震設計の考え方,鋼製橋脚の非線形数値解析と耐震設計に関する論文 集,土木学会・構造工学委員会,pp.101-106, 1997.3.
- 42) 鈴木森晶,青木徹彦,野村和弘:簡易補修後鋼製ラーメン橋脚の耐震性能に関する実験的研究,構造工学論文集,Vol.46A,pp.135-142,2000.3.
- 43) M Suzuki, H Omatsu, A Imanaka, T Aoki : Seismic resistance capacity of repaired steel bridge piers after severe earthquake, International Conference on STRUCTURAL CONDITION ASSESMENT, MONITORING AND IMPROVEMENT, pp.291-298, December 2005.
- 44) 尾松大道, 鈴木森晶, 青木徹彦: 損傷した矩形断面鋼製橋脚の補修後の耐震性 能に関する研究, 構造工学論文集, Vol.52A, pp.445-453, 2006.3.

第2章 損傷した鋼製橋脚の修復に関する基本的な考え方

2.1 まえがき

鋼製橋脚は市街地の高架高速道路や鉄道などの重要度の高い公共構造物に多用 されている.また,高速道路は地震発生後の緊急輸送道路として位置づけられてお り,地震後,このような構造物の機能を確保することは,迅速な復旧活動を行う上 で極めて重要である.

平成7年の兵庫県南部地震では,鋼製橋脚を含む多くの土木構造物が被害を受けた.都市におけるライフラインである主要幹線道路が長期間使用不能になり,救助および復旧活動の妨げとなった.また,地震後の復旧作業では,橋脚の修復方法に関する指針が無かったため,比較的軽微な損傷であっても部分的な補修では復旧できず,復旧まで長い期間を要した^{1),2)}.

兵庫県南部地震による被害を受け,鋼製橋脚の耐震性能に関する研究が精力的に 行われ,耐震設計基準に反映されてきた.しかし,これらの研究は多くが地震によ る損傷の無い既存橋脚および新設橋脚についてのものであり,損傷した橋脚の修復 方法と修復後の耐震性能に関する研究は極めて少なく,損傷した橋脚の残存耐力に 関する研究も同様に少ない.地震により鋼製橋脚が損傷した場合の早期の機能回復 のためには,地震発生後短期間で行える効果的な修復方法を検討することが必要で ある.

本章では,損傷した鋼製橋脚の修復方法を検討する上での基本的な考え方を述べ る.また,本研究において修復の対象とする橋脚の損傷形態を示すとともに,橋脚 の損傷度合により分類するために損傷レベルを設定する.また,修復後の鋼製橋脚 の耐震性能の目標値を検討するため,最大水平荷重および曲げ剛性をパラメータと してバイリニアモデルを用いた地震応答解析を行う.解析結果を基に,修復後の耐 震性能を評価するための具体的な目標値を提案する.

2.2 地震発生後の対応における本研究の位置付け

本論文では地震により損傷した円形断面鋼製橋脚を対象として、早期復旧が可能 な修復方法について検討している.震災後の緊急輸送路としての機能を確保すると ともに、本震後に発生が予想される大規模な余震および連動地震に対応するため、 簡便な施工により迅速に修復作業を行うことが必要である.

国や地方自治体が定める地震対策計画等においては,地震発生から72時間以内を 目途に,住民の避難や被災者の救助といった救急救命活動および被災状況の確認を 中心として活動し、その後、被災者への生活支援物資の輸送、施設等の復旧といった大規模な復旧活動へ移行していくとされている^{3).4)}. そのため本研究では、本格的な支援・復旧活動に取り掛かるまでの極早期に修復作業が完了し、かつ耐震性能を回復させることが可能な修復方法の提案を行う. 図-2.1に示すように、地震発生から24時間を目途に橋脚の損傷状況を調査し、修復の要否の判定および修復方法の決定を行う. その後、地震後72時間以内に修復作業を完了することを想定している.また、ここで提案する修復方法は、緊急時の応急復旧を想定したものであり、長期の供用まで考慮した恒久的な修復となりえるかについては別途検討が必要である.

図-2.1 地震後の修復作業のイメージ

2.3 円形断面鋼製橋脚の損傷状況に関する検討

2.3.1 対象とする鋼製橋脚の損傷状況

本研究で対象とするのは,地震により損傷 した円形断面鋼製橋脚のうち,図-2.2に示すよ うな外側に膨らむ提灯座屈が生じた橋脚であ る.なお,一般的に鋼製橋脚は車両衝突によ る損傷を防止するために,橋脚の基部にコン クリートが充填されている.また,近年は鋼 製橋脚の耐震性能の向上のために一定の高さ までコンクリートが充填されている.本研究

で提案する修復方法は、コンクリート充填部より上の無充填区間に局部座屈が生じた場合を想定している.また、地震後の橋脚の残留水平変位については、橋脚高さhに対してh/100以下で、水平変位の矯正が必要ない場合を想定している.なお、h/100を超える大きな残留水平変位が生じ、大がかりな復旧工事を必要とする場合には、復旧工事を行うまでの期間、余震による倒壊を防ぐための応急処置となることを想定している.

2.3.2 損傷度合による分類

一般に地震により鋼製橋脚に生じる損傷は一律ではないため,橋脚の損傷度合に 応じて適切な修復方法を検討していく必要がある.橋脚の損傷度合の評価について は,既往の研究により橋脚の最大応答水平変位および残留水平変位による評価方法 が提案されている⁵⁾.しかし,最大応答水平変位および残留水平変位は地震波の特 性により大きく異なる.最大応答水平変位については地震応答解析などから算出す る必要が有るため,地震後の早期の判定には向かない.また,残留水平変位の計測 は初動点検でも可能であるが,地震波の特性によっては残留水平変位が小さい場合 でも,地震の繰り返し荷重により局部座屈が進行し,耐力が低下する場合が考えら れる.しかしながら,局部的な損傷状況から橋脚の残存耐力を推定することは現状 では非常に困難である.

そのため本項では、図-2.3に示すように、一般的な鋼製橋脚の水平荷重-水平変位 関係をもとに異なる損傷度合を想定し、以下に示す4段階の損傷レベルを設定した ^{7),8)}.以降、実験に使用する供試体の損傷度合については損傷レベルを基に分類し ている.表-2.1には本研究で設定した損傷レベルと道路橋示方書に示される橋の耐 震性能の対応について示す.また、図-2.4に各損傷レベルのひずみの分布の例を示 す.図は繰り返し載荷時の圧縮側における、橋脚基部に生じた座屈部のひずみ値を プロットしたものである.各損傷レベルにおけるおおよそのひずみ値について以下 に示す.損傷とひずみの関係については4章も参照されたい.

- 損傷レベル1:公称値を用いて算出した降伏水平荷重(H_y)から実際に鋼製橋脚が 保有する降伏水平荷重(最大水平荷重(H_{max})に達する前の50~70%程度)までの領 域とする.これは耐震性能1に相当し、部分的には塑性域に達しているものの、 橋脚全体としては弾性的な挙動を示している.損傷レベル1では、橋脚に目視で 確認できるような損傷は生じないことが想定される.
- 損傷レベル2:最大水平荷重の70%程度から最大水平荷重程度までの領域とする.
 これは耐震性能2に相当し、この場合、鋼製橋脚の損傷は局部座屈が目視で確認できる程度であり、10000µ程度のひずみが生じていることが想定される.

- 損傷レベル3:最大水平荷重から最大水平荷重の95%程度まで荷重が低下する領域とする.想定される橋脚の損傷は基部の局部座屈が進行し,部分的に塗装のはがれなどが生じている程度である.この時のひずみ値は最大30000µ程度に達している.
- 損傷レベル4:荷重が最大水平荷重の70%程度まで低下する領域とする.橋脚の 損傷は、局部座屈が大きく進行し、部分的には亀裂が発生することも想定して いる.この場合ひずみ値はおよそ50000µ以上となっている.損傷レベル3、4に ついては耐震性能3に相当する.

損傷 レベル		橋の耐震性能 ⁶⁾
1	1	・橋全体の力学的特性が弾性域を超えない
2	2	・塑性化を考慮する部材にのみ塑性変形が生じる**
2	Z	・損傷の修復を容易に行い得る限界の状態
3	2	・塑性化を考慮する部材にのみ塑性変形が生じる*
4	3	・橋脚の水平耐力を保持できる限界の状態

表-2.1 損傷レベルと橋の耐震性能

※本研究において塑性化を考慮する部材は橋脚である.

図-2.4損傷レベル毎のひずみの分布

2.3.3 損傷を有する供試体の製作および呼称

本論文では,損傷した鋼製橋脚の修復方法について検討を行うことから,無損傷の供試体に対する繰り返し載荷および修復後の繰り返し載荷の2度の載荷実験を行っている.第3章では青木ら(2006)の研究において行った繰り返し載荷実験により損傷した供試体を使用する⁹⁾.また,第4章および第5章では,修復に先立ち,無損傷の供試体に対し所定の損傷を与えるための繰り返し載荷実験を行っている.

各供試体の呼称については,無損傷の供試体に対する一度目の載荷実験から得ら れた水平荷重-変位関係等の実験結果を示す場合には「損傷前」と称する.また, 一度目の載荷終了後の供試体の損傷状況および残存耐力等を示す場合には「修復 前」,修復後の載荷実験から得られた結果および供試体損傷状況を示す場合には「修 復後」と呼称する.詳細については各章を参照されたい.

2.4 解析的検討による修復後の目標性能の設定

2.4.1 修復後の耐震性能

本研究では,損傷した鋼製橋脚について,本震後の余震および連動地震等に対応 できる耐震性能まで回復可能な修復方法の提案を目的としている.修復方法を検討 するにあたり重要な要素としては,橋脚の耐力および変形性能といった耐震性能に 加え,修復後に再度地震動を受けた場合の損傷形態があげられる.例えば,修復部 の強度が著しく増加するような修復を行った場合,修復部直上で座屈が生じること が考えられる.このような修復を行った場合,最大水平荷重は増加するが,変形性 能が低下する恐れがある.さらに,最大水平荷重が増加することで,相対的に弱く なった支承部および基礎構造などの新たな箇所に損傷が生じ,より復旧が困難な損 傷形態となることも考えられる.そのため,最大水平荷重が大幅に増加するような 修復は望ましくない.加えて,修復による剛性の回復が十分でない場合,応答変位 が増加する可能性があるだけでなく,固有周期が変化し,振動系全体としての特性 が変わることで予期せぬ被害につながる恐れがある.以上より,最大水平荷重およ び剛性が損傷前と大きく変化せず,修復前と同様の損傷形態となるような修復方法 が望ましいと考えられる.

また,各修復方法についてその有効性を評価するためには,修復後の橋脚の損傷 形態に加え,耐震性能について具体的な目標値を設定することが必要である.その ため,鋼製橋脚の最大水平荷重および曲げ剛性に着目し,目標値を設定するための 解析的検討を行う.

2.4.2 解析方法

本解析で対象としたのは、第3章で用いるNo.5供試体と同等の径厚比パラメータ R_tを有する円形断面鋼製橋脚である(第3章,表-3.1参照).橋脚モデルの諸元は実物 大を想定し、相似比を4として算出した.対象橋脚のR_tは0.067であり、現行の設計 基準内(0.03 \leq R_t \leq 0.08)でやや薄肉の断面を設定した.これは、既存の円形断面鋼製 橋脚のうち、設計年次が古い橋脚は薄肉断面のものが多く、地震により損傷が生じ る可能性が高いからである.各諸元を表-2.2に示す.径厚比パラメータR_tおよび細 長比パラメータ $\overline{\lambda}$ は公称値(σ_y =235N/mm², E=200kN/mm²)を用いて式(2.1)および (2.2)より算出し、括弧内に実験値を用いた値を併記した.また、軸力比P/P_yについ ては、地盤種別ごとに設計水平震度k_{h0}=0.2、0.25および0.3を用いて算出した.

解析モデルは図-2.5に示すように、片持ち柱の上端に上部工重量に相当する集中 質量を与えた1自由度系モデルとした.この場合、復元力特性は上部工重量の慣性 力作用位置の水平荷重Hと水平変位δで表される.ここでは、解析の簡便さに加え、 安全側での評価とするため、図-2.6に示すような完全弾塑性型のバイリニアモデル を用いた.

$$R_t = \frac{D}{2t} \frac{\sigma_y}{E} \sqrt{3(1 - v^2)}$$
(2.1)

$$\overline{\lambda} = \frac{2h}{\pi r} \sqrt{\frac{\sigma_y}{E}}$$
(2.2)

ここで, D:外径, t:板厚, σy:鋼材の降伏応力, E:ヤング率, ν:ポアソン比, h:載 荷点高さ, r:断面二次半径である.

鋼種		STK400 相当	
直径 D (mm)		2445	
板厚 t (mm)		35.6	
載荷点高さ h (mm)		11560	
断面 2 次モーメント I (mm ⁴)		$1.955 imes 10^{11}$	
径厚比パラメータ R _t		0.067 (0.098)	
細長比パラメータ λ		0.296 (0.358)	
地盤種別	Ι	П	Ш
軸力比 P/Py	0.179	0.149	0.128

表-2.2 橋脚モデル諸元

図-2.6 復元力モデル

2.4.3 解析条件

修復後の鋼製橋脚の耐震性能を評価するために応答水平変位に着目し,修復後の 降伏水平荷重H_yおよび曲げ剛性Kの違いによる応答水平変位の比較を行う.損傷前 の降伏水平荷重H_{y0}および曲げ剛性K₀を基準として,H_y/H_{y0}およびK/K₀を変化させて 解析を行う.表-2.3に解析を行ったパラメータの範囲を示す.また,入力地震波は, 道路橋示方書に示される設計地震動のうち,表-2.4に示す,レベル2地震動(タイプ Ⅱ)の9波形を使用した.入力した加速度波形を図-2.7に示す.

表-2.3 解析パラメータ

降伏水平荷重比 H _y /H _{y0}	0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
曲げ剛性比 K/K ₀	0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3

地盤種別	地震名	記録場所及び成分
		神戸海洋気象台地盤上 NS 成分
I種地盤		神戸海洋気象台地盤上 EW 成分
		猪名川架橋予定地点周辺地盤上 NS 成分
	平成7年	JR 西日本鷹取駅構内地盤上 NS 成分
Ⅱ種地盤	兵庫県	JR 西日本鷹取駅構内地盤上 EW 成分
	南部地震	大阪ガス葺合供給所構内地盤上 N27W 成分
		東神戸大橋周辺地盤上 N12W 成分
Ⅲ種地盤		ポートアイランド内地盤上 NS 成分
		ポートアイランド内地盤上 EW 成分

表-2.4 入力地震波一覧

図-2.7 入力加速度波形

図-2.7 入力加速度波形(続き)

2.4.4 解析結果

図-2.8に解析から得られた応答変位時刻歴の例として、大阪ガス葺合供給所構内 地盤上観測地震波を入力した場合について結果の一部を示す.図の縦軸は上部工重 量の慣性力作用位置の応答水平変位、横軸は時間である.図-2.8(a)および(b)は曲げ 剛性Kを損傷前の橋脚と同じ(K/K₀=1)とし、降伏水平荷重を変化させた場合の例で ある.図-2.8(a)に示す、降伏水平荷重が±10%の場合では最大応答変位および残留変 位ともに大きな変化は見られない.一方で、図-2.8(b)に示すように降伏水平荷重が 20%小さい場合(H_y/H_{y0}=0.8)に、応答水平変位が損傷前と比較して25%程度増加して いる.また、降伏水平荷重を損傷前の橋脚と同じ(H_y/H_{y0}=1)とし、曲げ剛性Kを変化 させた場合の例を図-2.8(c)に示す.曲げ剛性が30%小さい場合(K/K₀=0.7)では、応答 水平変位が30%程度増加しており、残留水平変位にも著しい増加が見られる.

以上のように,曲げ剛性および降伏水平荷重が小さくなるほど応答水平変位が大 きくなる結果が得られた.

さらに、各パラメータの違いを比較するために、最大応答変位 δ_{max} をプロットしたものを図-2.9~2.11に示す.図の縦軸は修復後の δ_{max} を損傷前の橋脚(H_y/H_{y0} =1, K/K₀=1)の最大応答変位 δ_{max_0} で無次元化した値であり、横軸は曲げ剛性の比K/K₀である.図では、損傷前に対して降伏水平荷重比 H_y/H_{y0} が±10%のケースは白抜きマーカーで示す.また、 δ_{max} が±20%の範囲を破線で示している.動的解析結果の誤差を考慮し、応答変位の差が20%程度であれば、概ね同様の挙動を示したと見なす.

地震波により異なるものの,例えば図-2.10(c)に示すように概ね曲げ剛性比K/K₀ および降伏水平荷重比H_y/H_{y0}が低下するほど変位が増加する傾向を示している. K/K₀に関しては,例えば図-2.9(c)および図-2.10(a)より,曲げ剛性が損傷前の80%よ り小さい場合(K/K₀<0.8),応答変位が大きく増加していることが分かる.図-2.11(a) のように,曲げ剛性が大きい場合に応答変位が増加し,不安定な挙動を示すケース が見られるが,概ね曲げ剛性が大きいほど応答変位は減少している.

図-2.10(c),図-2.11(c)より降伏水平荷重Hが損傷前の90%より小さい場合(H_y/H_{y0} <0.9),応答変位はK/K₀によらず常に増加する傾向が見られる.また,地震波によ っては図-2.9(c)および図-2.10(b)のようにH_y/H_{y0}が大きい場合に応答変位が増加す る場合も見られた.

以上より,損傷前の橋脚と比較して,修復後の降伏水平荷重が±10%以内かつ曲 げ剛性が±20%以内であれば,応答変位は損傷前と大きく変わらない結果を示した.

図-2.8 応答変位時刻歴 (大阪ガス葺合供給所構内地盤上)

図-2.9 最大応答変位の比較(I種地盤)

図-2.11 最大応答変位の比較(皿種地盤)

2.4.5 耐震性能の目標値の設定

解析結果より、応答変位の大幅な増加を抑制するためには、修復後に降伏水平荷 重を±10%以内かつ曲げ剛性を±20%以内まで回復させる必要があると考えられる. 2.4.1 で述べたように、最大水平荷重の大幅な増加は、相対的に弱くなった別の箇 所に損傷が生じ、より復旧が困難な損傷形態を引き起こす可能性があるが、修復後 の最大水平荷重の増加を 10%程度に留めることで、そのような損傷を抑制できると 考えられる.また曲げ剛性の変化に伴う固有周期の大幅な変化は望ましくないが、 曲げ剛性を損傷前の±20%程度とすることで、固有周期の変化を±10%以内に抑える が可能である.

以上のことから、本研究では損傷前に対する修復後の耐震性能の目標値として、 最大水平荷重±10%、曲げ剛性±20%かつ変形性能が損傷前と同等以上であることと し、修復方法の評価を行うものとする.

2.5 まとめ

本章では,損傷した鋼製橋脚の修復方法を検討する上での基本的な考え方を述べた.また,修復の対象とする橋脚の損傷形態を示すとともに,橋脚の損傷度合により分類した.最大耐力および曲げ剛性をパラメータとして,バイリニアモデルを用いた地震応答解析を行い,その結果を基に修復後の鋼製橋脚の耐震性能の目標値を設定した.本章の内容を以下にまとめる.

- 本研究では、震災後の緊急輸送路としての機能確保および大規模な余震等への 対応のため、本格的な復旧活動が始まるまでの地震後72時間以内に修復作業を 完了させることを目的とする.
- 2. 局部座屈が生じた鋼製橋脚の損傷度合について評価するために,4段階の損傷レベルを設定し、分類することを提案した.
- 地震応答解析により,損傷前と比較して修復後の最大水平荷重を±10%以内かつ 曲げ剛性を±20%以内とすることで,損傷前と同等の応答変位となることを示し し,修復後に確保すべき耐震性能の目標値とすることを提案した.

参考文献

- 1) 阪神高速道路公団:大震災に立ち向かって-阪神. 淡路大震災記録書, 1996.1.
- 阪神高速道路管理技術センター:大震災を乗り越えて-震災復旧工事誌-,阪 神高速道路公団,1997.9.
- 国土交通省南海トラフ巨大地震・首都直下地震対策本部:国土交通省首都直下 地震対策計画[第1版], 2014.4.
- 4) 国土交通省南海トラフ巨大地震・首都直下地震対策本部:国土交通省首都直下 地震対策計画[第1版]国土交通省の総力を挙げて対応すべき重要テーマ, 2014.4.
- 5) 土木学会鋼構造新技術小委員会:鋼構造新技術小委員会最終報告書(耐震設計研究), 1996.
- 6) (社)日本道路協会:道路橋示方書・同解説 V 耐震設計編, 2012.3.
- 7) 嶋口儀之,鈴木森晶,太田樹,青木徹彦:損傷レベルが異なる矩形断面鋼製橋 脚のコンクリート充填修復と耐震性能に関する研究,構造工学論文集,Vol.59A, pp.484-492, 2013.3.
- 8) 太田 樹, 鈴木森晶, 嶋口儀之:異なる損傷度合の円形断面鋼製橋脚のコンク リート充填修復と耐震性能に関する研究,土木学会論文集 A2(応用力学), Vol.69, No.2(応用力学論文集 Vol.16), I_381-390, 2013.9.
- 服部宗秋,青木徹彦,鈴木森晶:圧縮芯をもつ鋼管橋脚の耐震性能実験,構造 工学論文集, Vol.52A, pp.465-475, 2006.3.
- 10) 嶋口儀之, 鈴木森晶, 太田樹, 青木徹彦: 局部座屈が生じた円形断面鋼製橋脚の修復方法に関する研究, 構造工学論文集, Vol. 58A, pp. 277-289, 2012.3.

第3章 大きく損傷した円形断面鋼製橋脚に対する 簡便な修復方法の提案

3.1 まえがき

平成7年1月17日に発生した兵庫県南部地震における道路橋の甚大な被害を受け、鋼製橋脚の耐震性能に関する研究が精力的に行われ、耐震設計基準に反映されてきた^{1)~3)}.しかし、これまでの研究の多くは地震による損傷の無い既存橋脚および新設橋脚についてのものである^{4)~7)}.また、現在の耐震設計では、地震による橋脚の損傷を許容し、修復性についても言及しているにもかかわらず、損傷した橋脚の修復方法と修復後の耐震性能に関する研究は極めて少ない.

愛知工業大学においては平成8年度から地震により損傷した鋼製橋脚の修復方法 に関する研究が進められてきた.これらの研究により,損傷した鋼製橋脚に対する 種々の修復方法が提案され,修復後の耐震性能について実験的に明らかにされてき た.しかし,これらの研究では,最大水平荷重および剛性は回復するものの,修復 箇所の強度が大幅に増加し,損傷個所が変化する場合および修復方法が複雑で施工 に時間がかかる場合が見られた^{8)~11)}.実際に.

そこで本章では、地震後 72 時間以内に施工可能な簡便な手法による修復方法の 提案を行う. なお、今回提案する修復方法は、本格的な復旧工事までの一時的な応 急復旧を想定しているが、第2章で述べたように、損傷前と比較して最大水平荷重 が±10%かつ曲げ剛性が±20%となるような修復とすることで、余震等に対応でき る耐震性能を確保する.実験では、過去に愛知工業大学にて行った静的繰り返し載 荷実験により損傷した円形断面鋼製橋脚(損傷レベル 4 相当)に対し、3 種類の修復 を行う¹²⁾. その後、修復前と同様の載荷実験を行い、修復後の耐震性能を明らかに し、修復方法の評価を行う.

3.2 実験計画

3.2.1 実験供試体

本研究では、青木ら(2006)の研究において繰り返し載荷実験に使用し、基部に局 部座屈が生じた円形断面鋼製橋脚を 16 体使用した¹²⁾.表-3.1 に新品時の供試体諸 元,図-3.1 に供試体概要図を示す.表中の降伏応力 σ_y およびヤング率 E は鋼材の 引張試験結果を示しており、径厚比パラメータ R_t および細長比パラメータ $\overline{\lambda}$ は公 称値を用いて算出したものである.なお、径厚比パラメータ R_t については引張試 験結果を用いて算出した値を括弧内に併記した.また、降伏水平荷重および降伏水 平変位については引張試験結果を用いて算出した.

図-3.2 に使用する供試体の実験経緯を示す. なお,本章では青木ら(2006)の研究 において行われた実験により得られた水平荷重-水平変位関係等の結果について示 す場合は「損傷前」,(2)の供試体の損傷状況および曲げ剛性の測定結果を示す場合 は「修復前」,(4)の修復後の実験結果および損傷状況について示す場合は「修復後」 と称する. また,表-3.2 に文献 12)と本研究の供試体名の対応について示す.

		0× P+ 70 70			
供試体 No.	1-1, 1-2	2-1, 2-2	3-1, 3-2	4-1, 4-2	5-1~5-8
鋼種		SS	400		STK400
直径 D (mm)		60	0.0		611.2
板厚 t (mm)	4.26	5.90	8.70	11.9	8.90
載荷点高さ h (mm)			2890		
断面 2 次モーメント I (mm ⁴)	3.54×10^{8}	4.86×10^{8}	7.07×10^{5}	9.51×10^{8}	7.64×10^{8}
降伏応力 σ _y (N/mm ²)	342	332	298	268	337
ヤング率 E (kN/mm ²)	211	204	201	210	197
	0.142	0.103	0.070	0.051	0.067
住厚 L ハ ノ × 一 ク K _t	(0.190)	(0.137)	(0.084)	(0.053)	(0.098)
細長比パラメータ λ	0.306	0.307	0.309	0.310	0.296
降伏水平荷重 H _y (kN)	119	159	207	251	248
降伏水平変位 δ _y (mm)	12.5	12.9	11.7	10.1	13.3

表-3.1 供試体緒元¹²⁾

修復方法 本研究 文献 12) No. R4.5-NC(ORG-1) 1-1 C1.5D-T4.5A 1-2 C1.5D-T4.5B R4.5-CR 2-1 C1.5D-T6.0A R6.0-NC(ORG-2) 2-2 C1.5D-T6.0B R6.0-CR 5-1 C1.5D-T9.0 P35-NC C Type 5-2 C1.0D-T9.0 P25-NC 5-3 C1.0D- T9.0D P15-CR 5-4 C0.5D- T9.0 ORG-5 5-5 C0.5D- T9.0D pushover 4-1 C1.5D-T12.0A R12.0-CR 4-2 C1.5D-T12.0B R12.0-NC(ORG-4) 3-1 CY0.5D-600 R9.0-CR

CY0.5D-600W

TH50-8

TH75-12

TH100-16

R9.0-NC(ORG-3)

P25-CR

P15-NC

P35-CR

CY type

ТН Туре

3-2

5-6

5-7

5-8

表-3.2 供試体名の対応表

3.2.2 供試体損傷状況

本研究で用いた供試体は、橋脚全体に大きな残留変位はないが、基部に局部座屈 が生じている.過去の繰り返し載荷実験においては最大水平荷重を超え、降伏水平 荷重程度に低下するまで載荷が行われており、そのままでは継続使用が困難と判断 されるような状態である.これは第2章で述べた橋脚の損傷レベルのうち損傷レベ ル4にあたり、道路橋示方書に示される耐震性能3相当の損傷と想定される³⁾.

また,各供試体は座屈変形量などの損傷状況に差異が見られたため,損傷状況を 把握するため,図-3.3 に示すように,最大座屈変形量 B_b,平均座屈発生高さ h_b,座 屈波形の頂部,上部および下部の曲率半径 ρ_t,ρ_mおよび ρ_bを測定した.その結果, 供試体の損傷は基部から h_b=85~115mm 程度の位置で B_b=15~35mm 程度外側に膨 らむ提灯座屈であった.各供試体の損傷状況測定結果を表-3.3 に示す.

また,使用した供試体は文献 12)に示されるように,軸力を分担するための圧縮 芯を設置して実験を行った供試体が含まれており,水平荷重-水平変位履歴曲線か ら損傷した供試体の曲げ剛性を推測することが困難であった.ここで,曲げ剛性は 水平荷重-水平変位履歴の除荷域の傾きである.さらに,供試体は野外に保管され ており,目立った断面欠損はないものの,錆などによる耐力の変化が懸念された. そこで,修復作業に先立ち,降伏水平変位δyの50%以内での繰り返し載荷を行い, 保有している曲げ剛性(以下,保有剛性)K₁を測定した.表-3.4に修復前の保有剛性 測定結果,損傷前初期剛性 K₀および剛性比 K₁/K₀を示す.なお,損傷前初期剛性 K₀については圧縮芯を設置せずに実験を行った供試体の,1δy載荷後の履歴より算 出した.

図-3.3 損傷状況測定位置

No	供封休友	座屈寸	法(mm)	曲室	率半径(n	nm)
INO.	供訊件名	h _b	B _b	ρ_t	ρ_{m}	ρ_b
1-1	C1.5D-T4.5A	100.3	14.5	30.0	23.8	43.7
1-2	C1.5D-T4.5B	116.3	16.0	18.7	19.7	23.9
2-1	C1.5D-T6.0A	98.8	17.0	31.6	18.7	19.6
2-2	C1.5D-T6.0B	89.1	30.0	17.5	13.9	20.5
5-1	C1.5D-T9.0	88.8	27.5	38.6	23.4	30.6
5-2	C1.0D-T9.0	94.4	23.0	36.1	29.7	42.4
5-3	C1.0D- T9.0D	92.5	21.0	42.4	34.1	31.6
5-4	C0.5D- T9.0	86.9	27.5	45.2	23.5	35.5
5-5	C0.5D- T9.0D	83.4	25.0	45.2	26.0	34.0
4-1	C1.5D-T12.0A	116.6	20.0	70.1	34.1	43.7
4-2	C1.5D-T12.0B	109.7	33.0	45.2	29.5	40.3
3-1	CY0.5D-600	116.3	19.5	53.5	29.5	43.7
3-2	CY0.5D-600W	115.9	22.0	52.5	34.1	42.4
5-6	TH50-8	94.4	22.5	36.1	26.1	37.2
5-7	TH75-12	95.6	17.0	52.2	34.1	43.5
5-8	TH100-16	93.8	25.5	32.7	26.0	34.0

表-3.3 供試体損傷状況測定結果

N	44+ ₹+ 4+-	保有剛性	初期剛性 12)	剛性比
NO.	供訊件	K ₁ (kN/mm)	K ₀ (kN/mm)	K_1/K_0
1-1	C1.5D-T4.5A	5.11	0 1 0	0.625
1-2	C1.5D-T4.5B	3.71	8.18	0.454
2-1	C1.5D-T6.0A	5.77	10.62	0.541
2-2	C1.5D-T6.0B	4.45	10.62	0.419
5-1	C1.5D-T9.0	9.40		0.587
5-2	C1.0D-T9.0	10.12		0.666
5-3	C1.0D- T9.0D	10.66	16.02	0.632
5-4	C0.5D- T9.0	9.25		0.577
5-5	C0.5D- T9.0D	9.64		0.602
4-1	C1.5D-T12.0A	14.22	19 56	0.766
4-2	C1.5D-T12.0B	10.91	18.50	0.588
3-1	CY0.5D-600	10.34	15.09	0.699
3-2	CY0.5D-600W	10.86	15.08	0.724
5-6	TH50-8	8.96		0.574
5-7	TH75-12	11.65	16.02	0.756
5-8	TH100-16	10.10		0.626

表-3.4 初期剛性および保有剛性
3.2.3 コンクリート充填による修復 (C Type)

この修復方法は橋脚内部にコンクリートを充填し,基部の抵抗モーメントを増加 させるとともに,座屈が内側に進行するのを抑制することを目的とする.尾松ら (2006)の研究により,損傷した矩形断面鋼製橋脚を対象としたコンクリート充填修 復においては,コンクリートを充填するのみの簡便な修復方法でありながら,本研 究の目指す性能に近い結果が得られた¹¹⁾.また,森下ら(2000)は,無損傷の円形断 面鋼製橋脚に対する補強として,コンクリート充填高さの違い,ダイアフラムの有 無をパラメータとして実験行った.この中で,ダイアフラムを設置した場合はダイ アフラムが無い場合と比べ,最大水平荷重および変形性能が大きく向上することを 示した¹³⁾.しかし,コンクリート充填高さを供試体直径の1.5倍より高くした場合 は,耐震性能の有意な向上は見られなかった.

以上より本研究では、以下に述べる3点に注目し修復を行う.表-3.5にコンクリート充填修復の供試体と修復方法および使用したコンクリートの圧縮強度の一覧 を示す.なお、充填コンクリートの設計強度は24N/mm²である.

1)板厚および保有剛性の異なる供試体に対して同様の修復を行いその効果を比較する.供試体の板厚は4種類とし、コンクリート充填高さは森下ら(2000)の研究結果を参考に、供試体外径Dの1.5倍の高さとする.図-3.4(a)に修復方法概要を示す.使用した供試体はNo.1-1、1-2、2-1、2-2、4-1および4-2である.供試体名は、No.1-1を例にすると、C1.5Dはコンクリート充填高さ1.5D、T4.5は鋼管の板厚4.5mm、 末尾のAは通し番号を意味する.

2)コンクリート充填高さによる効果を比較する. そのため, 充填高さが外径 D の 1.5 倍, 1.0 倍, 0.5 倍の3 種の修復を行う. 供試体は 5-1, 5-2, 5-4 を使用した.

3)ジベルを設置することによる効果を検証する.これは、コンクリート充填高さ を低くした場合,鉛直方向の拘束力が低下するため、十分な効果が得られないこと が考えられるからである.そこで、ダイアフラムに相当するものとして、供試体内 部にジベルを設置することで、コンクリートのずれを防止し、鉛直軸力を充填コン クリートに伝達させる.この場合は、充填高さを 1.0D、0.5D の 2 種とし、ジベル の有無による比較を行う.供試体は 5-3 および 5-5 を使用した.ジベルは図-3.4(b) に示すようにコンクリートを充填する高さに設置し、コンクリートと鋼材のずれを 拘束する.また、ジベルは施工を簡便にするため、図-3.5 および図-3.6 に示すよう に、等辺山形鋼(SS400、板厚 9mm、75×75mm)を幅 50mm 程度に切断し、全周に溶 接する.ただし、既設の鋼製橋脚には溶接に適さない鋼材を使用したものもある. そのためジベルの溶接を行う場合は、溶接が可能な橋脚か事前に確認することが必 要である.今回供試体に使用した鋼材は、必ずしも、溶接性が保障されたものでは ないが、事前に予備の供試体を用いて、溶接性に問題がないことを確認している.

No	供試体名	板厚	充填	ジベル	コンクリート圧縮強度	材齢
NO.		(mm)	高さ		(N/mm^2)	(日)
1-1	C1.5D-T4.5A	4.26	1.5D	—	30.7	31
1-2	C1.5D-T4.5B	4.20	1.5D	—	34.0	30
2-1	C1.5D-T6.0A	5.00	1.5D	—	35.4	29
2-2	C1.5D-T6.0B	5.90	1.5D	—	26.3	29
5-1	C1.5D-T9.0		1.5D	—	26.3	31
5-2	C1.0D-T9.0		1.0D	—	28.1	34
5-3	C1.0D- T9.0D	8.90	1.0D	あり	26.8	37
5-4	C0.5D- T9.0		0.5D	—	27.6	40
5-5	C0.5D- T9.0D		0.5D	あり	28.5	44
4-1	C1.5D-T12.0A	11.0	1.5D	_	34.3	34
4-2	C1.5D-T12.0B	11.9	1.5D	—	27.2	34

表-3.5 コンクリート充填修復供試体一覧

図-3.5 ジベル溶接位置(横断面図)

図-3.6 ジベル溶接の様子

3.2.4 鋼板巻き立てによる修復 (CY Type)

この修復方法は、座屈部の外側から鋼板を巻き、隙間にコンクリートを充填する ことで座屈がさらに外側に進行するのを抑制することを目的とする.表-3.6 に供試 体一覧を、図-3.7 に修復方法概要を示す.なお、図中にコンクリートの圧縮強度を 示す.過去に鋼板の巻き立て高さを変えて修復を行った研究では、外径の0.5 倍の 高さで最も望ましい結果が得られた¹⁰⁾.この研究では、巻き立て鋼板基部とベース プレートを溶接で固定する修復方法を用いた.しかし、実橋脚において同様の修復 を行う場合、ベースプレートを露出させるためには根巻きコンクリートのはつりな どの大掛かりな工事が必要となる.そのため本研究では、鋼板基部の溶接が無い場 合でも十分な修復効果が得られるか検証するため、溶接の有無で比較を行う.鋼板 は断面 2 次モーメントが供試体本体と一致するよう板厚 6mm のものを使用し、供 試体から 35mm 離して 0.5D の高さまで巻き立てる.また、巻き立て鋼板の内側に 30×10×10 mmの鋼材をジベルとして溶接することで、コンクリートの抜け上がりを 防止する.表-3.6 に示すように、供試体は 3-1 および 3-2 の 2 体を使用した.CY0.5D は鋼板巻き立て高さ 0.5D, 600 は鋼管の直径が 600mm、末尾の W は溶接ありを意 味する.

No.	供試体名	鋼種	板厚 (mm)	鋼板巻き 立て高さ	基部溶接
3-1	CY0.5D-600	55400	° 70	0.5D	_
3-2	CY0.5D-600W	33400	8.70	0.3D	あり

表-3.6 鋼板巻き立て修復供試体一覧

3.2.5 補剛材による修復 (TH Type)

この修復方法は,損傷による曲げ剛性の低下の原因を,断面が欠損したことによるものとみなし,補剛材を溶接して欠損した断面を補うことで,曲げ剛性を回復させることを目的とする.また,同時に鉛直軸力を伝達する役割を持たせている.供試体は座屈部寸法 h_bおよび B_bが同程度の 5-6, 5-7 および 5-8 を使用した.表-3.7 に供試体と修復方法の一覧,図-3.8 および図-3.9 に修復方法概要図および内部の様子を示す.供試体名は,例えば TH50 は断面積の 50%,8 は補剛材の本数を意味する.

本研究で用いた補剛材は断面欠損を補い,応力を伝達させることを目的として, 厚さ9mm,幅50mmの平板を鋼管の内側に溶接後,厚さ12mm,幅75mmのリブを 溶接してT形断面とする.このような形状としたのは,平鋼だけでは,溶接を行わ ない橋脚の座屈区間において容易に座屈すると考えられるからである.また,修復 箇所とその上の断面の強度の差を緩和するため,上に行くほど補剛材の断面積が小 さくなるように加工を行った.補剛材には,入手しやすく,加工の手間が少ない型 鋼の利用も考えられる.ただし今回は補う断面積と一致する型鋼が無かったことか ら,平板を使用した.補剛材の高さは基部から 0.5D の高さまでとする.また,補 剛材によりどの程度の断面積を補う必要があるかは明らかではないことから,今回 は,補剛材の断面積は供試体の断面積に対して 50%,75%,100%の3種類を設定し, 比較を行った.なお,ジベルの溶接と同様,この修復方法を用いる場合は橋脚の溶 接性について事前に確認する必要がある.

No.	供試体名	鋼種	板厚	補剛材	修復により
			(mm)	本数	補う断面積
5-6	TH50-8	STK400		8	50%
5-7	TH75-12		8.90	12	75%
5-8	TH100-16			16	100%

表-3.7 補剛材修復供試体一覧

図-3.8 補剛材修復(TH50-8)

図-3.9 補剛材溶接後の様子 (TH50-8)

3.2.6 実験載荷装置

実験載荷装置を図-3.10 に示す.実験では載荷梁を介して鉛直方向に設置した 2 基の4400kNアクチュエータを用いて、上部工重量を想定した一定鉛直荷重を載荷 する.そして、水平に設置した1基の4400kNアクチュエータを用いて、地震時の 上部工重量の慣性力を想定した水平繰り返し載荷を行う.アクチュエータの両端は ピン構造になっており、供試体の大変形にも対応できる.また、水平荷重は鉛直方 向アクチュエータの傾きによる水平成分を加えて補正した値で評価している.

3.2.7 鉛直荷重および降伏水平荷重,変位の算定

ー定鉛直荷重 P は文献 14)に示される式(3.1)~式(3.3)より算出し,式(3.1)および (3.2)をともに満たす値を鉛直荷重として載荷した.なお,本研究では地盤種別を Ⅱ 種と想定し,設計水平震度 k_hを 0.25 とした ³⁾.

$$\frac{\alpha P}{P_u} + \frac{C_m \alpha M}{M_v (1 - \alpha P/P_E)} \le 1.0$$
(3.1)

$$\frac{\alpha P}{P_{y}} + \frac{\alpha M}{M_{y}} \le 1.0 \tag{3.2}$$

 $M = k_h Ph \tag{3.3}$

ここで,α:安全率(=1.14),P_E:オイラーの座屈強度,P_y:降伏軸力,P:鉛直荷重, P_u:道路橋示方書に示される局部座屈の影響を考慮した中心軸圧縮強度¹⁵⁾,C_m:等 価モーメント修正係数(=0.85),M:柱基部の曲げモーメント,M_y:降伏モーメント, k_h:震度法に用いる設計水平震度(=0.25),h:載荷点高さである.

降伏水平荷重 H_yは鉛直荷重の影響を考慮し,式(3.4)より,繰り返し載荷の基本 変位となる降伏水平変位 δ_yは,弾性理論から式(3.5)より算出した.また,実験では, 基部の剛体変形を含んだ状態で繰り返し載荷を行っているが,結果を整理する際は, 剛体変形を補正した値で評価している.

$$H_{y} = (\sigma_{y} - \frac{P}{A})\frac{z}{h}$$
(3.4)

$$\delta_{y} = \frac{H_{y}h^{3}}{3EI}$$
(3.5)

ここで, σ_y:降伏応力, A:断面積, z:断面係数, E:ヤング率, I:断面 2 次モー メントである.

図-3.11 に載荷パターンの概要図を示す.降伏水平変位 δ_y の整数倍の変位を $\pm \delta_y$, $\pm 2\delta_y$, $\pm 3\delta_y$, ・・のように順次振幅を増加させ、漸増繰り返し載荷を行った.

図-3.11 載荷パターン

3.3 実験結果

3.3.1 水平荷重-水平変位関係

実験から得られた各供試体の水平荷重-水平変位履歴曲線を図-3.12 に示す.縦軸 を降伏水平荷重 H_y, 横軸を降伏水平変位 δ_yで無次元化している. 図中の破線は損 傷前の供試体(ORG-),実線は修復後の供試体の履歴を示している.

図-3.12より,履歴曲線の形状から大きく3つのグループに分けることができる. 1つ目は(j)No.4-1,(l)No.3-1および(n)No.5-6のように最大水平荷重以降も安定した 大きな履歴を描くグループである.このグループは損傷前と比較して最大水平荷重 が同程度まで回復し,かつ,高い変形性能とエネルギー吸収量が得られた.2つ目 は(a)No.1-1,(d)No.2-2,(f)No.5-2および(g)No.5-3などのようにピンチング挙動が 見られたグループである.このグループは損傷前より変形性能は向上しているが, 横に細長い履歴を描いており,エネルギー吸収量がやや小さくなっている.3つ目 は(m)No.3-2,(o)No.5-7および(p)No.5-8のように損傷前とよく似た履歴を描くグル ープである.このグループは最大水平荷重については損傷前より増加したものの, その後,急激な荷重の低下が見られ,変形性能は向上しなかった.また,詳しくは 後述するが,いずれも修復部の直上で新たに座屈が生じた.

以上のことから,修復後の水平荷重-水平変位関係は,1つ目のグループのような履 歴となることが望ましい.

図-3.12 水平荷重-水平変位履歴曲線

図-3.12 水平荷重-水平変位履歴曲線(続きI)

図-3.12 水平荷重-水平変位履歴曲線(続きⅡ)

3.3.2 包絡線

図-3.13~図-3.18に水平荷重-水平変位履歴曲線の各サイクルの折り返し点を結ん だ包絡線を,修復方法ごとに示す.

図-3.13, 3.14 および 3.16 はコンクリートを 1.5D まで充填した供試体の結果であ る.供試体の板厚が異なる場合においても,1.5D まで充填することで,いずれも最 大水平荷重は十分回復しており,変形性能も大きく向上したことが分かる.図-3.15 はコンクリート充填高さおよびジベルの有無を変えた場合の結果である.ジベルが 無い場合,例えば 0.5D と 1.5D を比較すると,コンクリート充填高さが高いほど荷 重が増加することが分かる.また,充填高さにかかわらず変形性能は向上している. ジベルのある供試体(末尾が-D)はジベルのない供試体と比較して,最大水平荷重が 高く,充填高さが 0.5D と低い場合(C0.5D-T9.0D)でも大きく荷重が回復した.最大 水平荷重に達した後も 88y程度までは顕著な荷重の低下はなく,変形性能も高いこ とが分かる.以上より,1.5D の高さまでコンクリートを充填することで,十分な修 復効果が期待できることを示した.

図-3.17 に示す鋼板巻き立て修復では,損傷前が 3δ_y,巻き立て鋼板基部の溶接が 有る場合(CY0.5D-600W)が 4δ_y,基部の溶接が無い場合(CY0.5D-600)が 5δ_y程度にお いて最大水平荷重となっている.鋼板基部を溶接した場合は最大水平荷重および変 形性能ともに向上しているが,最大水平荷重到達後の荷重の低下が著しい.一方で, 溶接がない場合は最大水平荷重以降も荷重の低下が緩やかであり,変形性能が大き く向上し,優れた修復効果を示した.しかし,鋼板巻き立てによる修復は,鋼板の 加工および溶接後にコンクリートを充填する必要が有り,作業工程が複雑で時間を 要する.

図-3.18に示す補剛材修復では,損傷前が 3 δ_y で最大水平荷重に達しているのに対 し,補剛材を8本溶接した場合(TH50-8)は 5 δ_y 程度で最大水平荷重となっており, その後の荷重の低下も緩やかで,変形性能が大きく向上している.また,最大水平 荷重についても十分回復している.補剛材が 12本および 16本の場合(TH75-12, TH100-16)は最大水平荷重はやや増加しているが,損傷前とほぼ同じ包絡線を示し た.ただし,この2つについては修復箇所の直上で新たな座屈が生じる損傷形態と なった.以上のように,補剛材を8本溶接した場合が最も優れた性能を示した.た だし,この修復方法は,補剛材の量により修復後の挙動が大きく異なるため,対象 の橋脚に合わせて,補剛材の断面を適切に設計する必要が有る.

43

図-3.13 コンクリート充填修復(C Type:T4.5)

図-3.14 コンクリート充填修復(C Type:T6.0)

図-3.15 コンクリート充填修復(C Type:T9.0)

図-3.16 コンクリート充填修復(C Type:T12.0)

図-3.17 鋼板巻き立て修復(CY Type)

図-3.18 補剛材修復(TH Type)

3.3.3 供試体損傷状況

(1) コンクリート充填修復(C Type)

図-3.19(a)および(b)に実験後の供試体鋼管部の損傷状況を示す.

ジベルの無い供試体は、図-3.19(a)に示すように、板厚および充填高さに関わら ず,修復前に生じていた基部の座屈が徐々に進行した.9体のうち6体の供試体は、 最終的には座屈部にクラックが発生した.クラックは座屈変形の頂部,座屈部の下、 鋼管製造時の溶接のうち座屈部にかかる箇所のいずれかで発生した.クラックが発 生したのはいずれも 86_y以降の大変位に達してからである.これは道路橋示方書に 示されているコンクリート充填円形鋼製橋脚の許容ひずみ 5₆yに相当する 5₈y以上 である.

ジベルの有る供試体は、図-3.19(b)に示すように基部の既存の座屈が進行すると ともに、ジベル溶接位置に新たに座屈が発生した.ジベル溶接位置の座屈は充填高 さが 0.5D の供試体においてより顕著に見られたが、これによる荷重の大きな低下 などは見られなかった.その後、108_y程度の大変位において基部の座屈部の頂部に クラックが発生した.

また、実験後に供試体を溶断し、充填コンクリートの破壊状況を観察した.図 -3.18(c)、(d) および(e)に充填コンクリートの損傷状況を示す.いずれの供試体も座 屈部の頂点の高さで水平方向に断面全体に達するひび割れが発生した.これは、繰 り返し載荷の過程で、充填コンクリートに引張力が作用した時に発生したひび割れ が徐々に進行していき、断面全体に達したと考えられる.中には、ひび割れの開始 高さが異なったためか、図-3.18(d)に示すようにひび割れが二層発生している供試 体も見られた.また、鋼管座屈部に充填したコンクリートには局部的な圧壊が生じ た.これは鋼管座屈部の充填コンクリートにより座屈の進行が抑えられたためと考 えられる.なお、充填高さおよび鋼管の板厚が異なっても、充填コンクリートの破 壊形状に大きな違いは見られなかった.

ジベルの有無で比較をすると、ジベルの無い供試体では充填コンクリートの損傷 が座屈部に集中しているのに対し、ジベルの有る供試体では図-3.18(e)に示すよう に座屈部以外の箇所でも様々な損傷が見られた.これは、ジベルにより充填コンク リートのずれが拘束されるため、ひび割れが断面全体に達した後も充填コンクリー トが鉛直軸力の一部を受け持っていたためであると考えられる.特に充填高さが 0.5Dの供試体ではせん断破壊特有の破壊が見られた.また、ジベル周辺のコンクリ ートが崩れており、図-3.18(f)に示すようにジベルにも変形が見られた.なお、溶接 が原因と考えられるクラックなどは見られなかった.

(a) C1.5D-T6.0A 基部の座屈に発生したクラック ジベル溶接位置に生じた座屈

(b) CO. 5D-T9. 0D

(c) C1.5D-T9.0 コンクリートの損傷(ジベル無し)

(d) C1.5-T9.0 二層のひび割れ

(e) CO. 5D-T9. OD コンクリートの損傷(ジベル有り) 図-3.19 コンクリート充填修復の損傷状況

(f) CO.5D-T9.0D ジベルの変形

(2) 鋼板巻き立て修復(CY Type)

図-3.20(a)に示すように巻き立て鋼板基部の溶接が無い場合(CY0.5D-600)は,修復 前から生じていた基部の座屈部の上部で,新たに内側にへこむような座屈が生じた. 一方で,鋼板基部とベースプレートを溶接した場合(CY0.5D-600W)は,図-3.20(b) に示すように,修復部直上に新たに座屈が生じ,修復部に損傷は見られなかった. いずれの供試体も座屈がさらに外側に進行するのは抑制されており,巻き立て鋼板 基部の溶接が無くても,外側へ膨らむ座屈に対して十分な拘束効果が得られること が分かった.実構造物では,アンカーボルトなどが存在し,容易に溶接が出来ない 場合も有るため,有効な手法の一つと考えられる.また,いずれの供試体もコンク リートが抜け上がるような挙動は見られず,ジベルにより抜け上がりが抑制された と考えられる.ただし,修復作業の工程が複雑であるため,施工に時間がかかり, ごく早期の修復については対応が難しいことが考えられる.

(a) CY0.5D-600 (溶接無し)

(b) CY0.5D-600W

(溶接有り)

図-3.20 鋼板巻き立て修復の損傷状況

(3) 補剛材修復(TH Type)

図-3.21 に補剛材修復の実験後の損傷状況を示す.補剛材が 8 本の場合(TH50-8) では基部の座屈が進行するとともに、図-3.21(a)に示すように、内側に溶接した補 剛材に座屈やクラックが生じた.一方で、補剛材が 12 本の場合(TH75-12)は図 -3.21(b)に示すように修復箇所の直上に新たに外側に膨らむ座屈が生じ、その後荷 重が急激に低下した.補剛材については座屈やクラックは確認されなかった.補剛 材が 16 本の場合(TH100-16)にも同様の挙動が見られた.これは、修復部の強度が 大きく増加したためであり、耐力が過剰に増加した修復であると考えられる.荷重 -変位関係については図-3.11(i)に示したように損傷前と近い曲線となったが、損傷 前とは異なる部位に損傷が発生しており、今回使用した供試体の損傷の程度の場合、 補剛材の量が過剰であったと考えられる.なお、溶接が原因と考えられるクラック は発生しておらず、溶接性に問題はなかったと考えられる.

(a) TH50−8 補剛材の座屈およびクラック

(b) TH75-12修復部直上に新たに生じた座屈

図-3.21 補剛材修復の損傷状況

3.3.4 最大水平荷重および曲げ剛性

表-3.8 に損傷前および修復後の最大水平荷重 H_{max}の一覧を示す.16 体の供試体 のうち12 体は最大水平荷重が損傷前のおよそ±10%以内となった.コンクリート充 填修復の内,板厚 4.5 mmの場合(No.1-1)は損傷前に対し 19%増加した.また,充填 高さを変えて修復を行った場合,1.0D(No.5-2),0.5D(No.5-4)および 0.5D のジベル 有(No.5-5)がそれぞれ 18%,37%および 14%の減少となった.

表-3.9 に修復前および修復後の剛性比 K₁/K₀および K₂/K₀を示す. K₂は修復後の載 荷実験の 1δ_y載荷後の水平荷重-水平変位履歴から算出した. 剛性については 13 体 の供試体が損傷前の±20%まで回復した. コンクリートを 1.5D まで充填したものは, 剛性が大きく回復しており,特に板厚の薄い供試体では効果が大きくなっている. 一方でコンクリート充填高さが 0.5D と低い場合(No.5-4)は剛性の回復はわずかであ る. これは内部に充填したコンクリートが抜け上がったためであると考えられる.

また,鋼板巻き立て修復(No.3-1 および No.3-2)では,最大水平荷重は±10%以内に 回復したが,剛性の回復量は小さくなっている.これは,水平荷重が作用した場合, 圧縮側の座屈部が外側に膨らむのは拘束されるが,引張側では座屈部が延ばされ橋 脚が抜け上がるような挙動を示すため,コンクリートによる座屈の拘束効果があま り発揮されなかったためと考えられる.

No	供封体	」 「「」」 「」」 「」」 」 」 」 」 」 」 」 」 」 」 」 」	依省徑/II /II)	依省 () / 归 / 占 击
NO.	供訊件	損饧刖(H _{max} /H _y)	修復依(H _{max} /H _y)	修復佼/損傷則
1-1	C1.5D-T4.5A	1.27	1.51	1.19
1-2	C1.5D-T4.5B	1.27	1.36	1.07
2-1	C1.5D-T6.0A	1.37	1.34	0.98
2-2	C1.5D-T6.0B	1.37	1.22	0.89
5-1	C1.5D-T9.0	1.55	1.40	0.90
5-2	C1.0D-T9.0	1.55	1.28	0.82
5-3	C1.0D-T9.0D	1.55	1.49	0.96
5-4	C0.5D-T9.0	1.55	0.98	0.63
5-5	C0.5D-T9.0D	1.55	1.34	0.86
4-1	C1.5D-T12.0A	1.84	1.87	1.02
4-2	C1.5D-T12.0B	1.84	1.80	0.98
3-1	CY0.5D-600	1.46	1.43	0.98
3-2	CY0.5D-600W	1.46	1.54	1.06
5-6	TH50-8	1.55	1.41	0.91
5-7	TH75-12	1.55	1.64	1.06
5-8	TH100-16	1.55	1.69	1.09

表-3.8 最大水平荷重一覧

表-3.9 曲げ剛性一覧

No.	供試体	修復前(K ₁ /K ₀)	修復後(K ₂ /K ₀)
1-1	C1.5D-T4.5A	0.625	1.104
1-2	C1.5D-T4.5B	0.454	1.127
2-1	C1.5D-T6.0A	0.544	0.988
2-2	C1.5D-T6.0B	0.419	1.016
5-1	C1.5D-T9.0	0.587	0.868
5-2	C1.0D-T9.0	0.666	0.837
5-3	C1.0D- T9.0D	0.632	0.928
5-4	C0.5D- T9.0	0.577	0.609
5-5	C0.5D- T9.0D	0.602	0.760
4-1	C1.5D-T12.0A	0.766	1.040
4-2	C1.5D-T12.0B	0.588	0.846
3-1	CY0.5D-600	0.699	0.776
3-2	CY0.5D-600W	0.724	0.813
5-6	TH50-8	0.574	0.810
5-7	TH75-12	0.756	1.020
5-8	TH100-16	0.626	0.989

3.3.5 塑性率

橋脚の変形性能について塑性率を用いて評価する.本研究では、図-3.22 に示すように、水平荷重-水平変位の包絡線を基に、最大水平荷重に達した後、最大水平荷重の95%となった時の水平変位をδ95とし、塑性率μ95=δ95/δyを算出した.表-3.10 に損傷前および修復後の塑性率を示す.

コンクリート充填による修復(C Type)ではすべての供試体で塑性率が向上し、最 高で損傷前の3倍以上に向上した.このうちジベルの無い供試体では、充填高さに よる効果の違いが見られ、充填高さが0.5Dの場合(No.5-4)塑性率の向上はわずかで ある.ジベルを設けた供試体(No.5-3および5-5)では、いずれも損傷前の2倍以上 となった.鋼板巻き立て(CY Type)および補剛材(TH Type)による修復では、元の損 傷がさらに進行する損傷形態となった場合(No.3-1およびNo.5-6)は、修復箇所の直 上で新たに座屈が生じた場合(No.3-2,5-7,3-1および5-8)と比較して、同種の修復方 法を用いた場合でも塑性率が大きく向上した.

No.	供試体	損傷前(µ ₉₅)	修復後(µ95)	修復後/修復前
1-1	C1.5D-T4.5A	2.17	5.49	2.52
1-2	C1.5D-T4.5B	2.17	6.66	3.06
2-1	C1.5D-T6.0A	2.46	6.37	2.59
2-2	C1.5D-T6.0B	2.46	8.09	3.29
5-1	C1.5D-T9.0	3.65	6.29	1.72
5-2	C1.0D-T9.0	3.65	5.47	1.50
5-3	C1.0D-T9.0D	3.65	9.05	2.48
5-4	C0.5D-T9.0	3.65	4.36	1.19
5-5	C0.5D-T9.0D	3.65	8.07	2.21
4-1	C1.5D-T12.0A	6.67	7.93	1.19
4-2	C1.5D-T12.0B	6.67	10.03	1.50
3-1	CY0.5D-600	3.19	6.44	2.02
3-2	CY0.5D-600W	3.19	4.97	1.56
5-6	TH50-8	3.65	5.55	1.52
5-7	TH75-12	3.65	3.37	0.92
5-8	TH100-16	3.65	3.79	1.04

表-3.10 塑性率一覧

3.4 まとめ

本章では地震により損傷した円形断面鋼製橋脚の早期復旧を目的として,地震後 72時間以内に施工が完了し,損傷前に対して最大水平荷重が±10%かつ曲げ剛性が ±20%まで回復可能な修復方法を提案した.過去の耐震実験で基部に座屈の生じた 円形断面鋼製橋脚に対し3種類の修復を施し,繰り返し載荷実験を行ってその耐震 性能を明らかにし,コンクリート充填による修復が簡便かつ効果的な修復方法であ ることを示した.本章で得られた結論を以下にまとめる.

- 本章では、局部座屈が生じた円形断面鋼製橋脚(損傷レベル 4 相当)に対して、 コンクリート充填、鋼板巻き立ておよび補剛材溶接による 3 種類の修復を行い、 修復後の耐震性能を明らかにした。
- コンクリート充填修復では、1.5D 程度の高さまで充填することで、最大水平荷 重および曲げ剛性がともに大きく回復し、変形性能も向上しており、コンクリ ートを充填するだけの簡便な手法ながら優れた修復効果が得られることを示した。
- 3. 橋脚の損傷が大きい(損傷レベル 4)場合,コンクリート充填高さが 1.0D 以下で は十分な修復効果は期待できないが,ジベルを設置することで,充填高さが 1.0D 程度でも目標とする耐震性能までに回復させることができる.
- 4. 補剛材修復では、補剛材の本数を8本とした場合(TH50-8)に損傷前の同等の最 大水平荷重まで回復し、変形性能が向上した.補剛材の量を適切に選択するこ とで優れた修復方法となることを示したが、実橋脚に適用するためには、補剛 材の本数および形状を対象とする橋脚にあわせて詳細に設計することが必要で ある.
- 5. 鋼板巻き立て修復では,鋼板基部を溶接により固定しない場合 (CY0.5D-600)に, 最大水平荷重が±10%まで回復し,変形性能が向上する優れた修復効果が得ら れることを示した.しかし,鋼板巻き立て修復は作業工程が複雑で,72時間以 内に修復作業を完了することは難しいと思われる.
- 施工の簡便さを考慮した場合、今回提案した修復方法中では、コンクリート充 填修復が最も簡便な修復方法であり、地震後72時間以内に修復作業が完了でき、 目標とする耐震性能(最大水平荷重±10%、曲げ剛性±20%)まで回復させること が可能である.

参考文献

- 1) 阪神高速道路公団:大震災に立ち向かって-阪神. 淡路大震災記録書, 1996.1.
- 2) 阪神高速道路管理技術センター:大震災を乗り越えて-震災復旧工事誌-,阪神高 速道路公団,1997.9.
- 3) (社)日本道路協会:道路橋示方書. 同解説 V耐震設計編, 2012.3.
- 宇佐美勉,鈴木森晶, Iraj H.P.Mamaghani, 葛漢彬: コンクリートを部分的に充填した鋼製橋脚の地震時保有水平耐力照査法の提案,土木学会論文集, No.525/I-33,pp.69-82,1995.10.
- 5) 松村政秀,北田俊行,澤登善誠,中原嘉郎:無充填区間を有するコンクリート 充填工法による既設鋼製橋脚の耐震補強法に関する実験的研究,構造工学論文 集, Vol.47A, pp.35-44, 2001.3.
- 6) 北浦雅司,折野明宏,石澤俊希:コンクリートを部分充填した円形鋼製橋脚の 弾塑性挙動に関する研究,土木学会論文集,No.696/I-58, pp.285-298, 2002.1.
- 7) 忠和男,櫻井孝昌:既設円筒鋼製橋脚の鋼板貼り付けによる耐震補強法,構造 工学論文集, Vol.49A, pp.139-144, 2003.3.
- 8) 青木徹彦,山田将樹,林幸司:地震時破損後に修復した橋脚モデルの耐震載荷 実験と耐震設計の考え方,鋼製橋脚の非線形数値解析と耐震設計に関する論文 集,土木学会・構造工学委員会,pp.101-106,1997.3.
- 9) 鈴木森晶,青木徹彦,野村和弘:簡易修復後鋼製ラーメン橋脚の耐震性能に関 する実験的研究,構造工学論文集, Vol.46A, pp.135-142, 2000.3.
- M Suzuki, H Omatsu, A Imanaka, T Aoki : Seismic resistance capacity of repaired steel bridge piers after severe earthquake, International Conference on STRUCTURAL CONDITION ASSESMENT, MONITORING AND IMPROVEMENT, pp.291-298, December 2005.
- 11) 尾松大道, 鈴木森晶, 青木徹彦: 損傷した矩形断面鋼製橋脚の修復後の耐震性能に 関する研究, 構造工学論文集, Vol.52A, pp.445-453, 2006.3.
- 12) 服部宗秋,青木徹彦,鈴木森晶: 圧縮芯をもつ鋼管橋脚の耐震性能実験,構造 工学論文集, Vol.52A, pp.465-475, 2006.3.
- 13) 森下益臣,青木徹彦,鈴木森晶:コンクリート充填円形鋼管柱の耐震性能に関 する実験的研究,構造工学論文集, Vol.46A, pp.73-83, 2000.3.
- 14) 宇佐美勉:鋼平面ラーメン構造物の極限強度評価式の実験データによる検証, 構造工学論文集, Vol.36A, pp.79-88, 1990.3.
- 15)(社)日本道路協会:道路橋示方書. 同解説 Ⅱ鋼橋編, 2012.3.

第4章 損傷度合が異なる円形断面鋼製橋脚に対する コンクリート充填修復と耐震性能

4.1 まえがき

これまで愛知工業大学では、地震により損傷した鋼製橋脚の修復に関する研究が 進められ、修復後の耐震性能について検討してきた¹⁾⁻⁵⁾. 第3章では、基部に局部 座屈が生じた円形断面鋼製橋脚を対象として、修復方法を提案し、修復後の耐震性 能を実験的に明らかにした.この中で、コンクリート充填による修復方法は、損傷 がコンクリート無充填部で生じた場合および橋脚の残留変形が小さいことなどの 制約条件は有るものの、橋脚内部にコンクリートを充填するだけの簡便な方法で目 標とする性能が得られることを示した.しかし、これまでの研究は、繰り返し載荷 の過程で鋼製橋脚基部の局部座屈が進行し、耐力が著しく低下した橋脚(第2章で 示した損傷レベル4相当)を対象としたものである.実際の地震時に発生すること が予想される、最大水平荷重をわずかに超える程度までの比較的軽微な損傷(損傷 レベル2および3)については、修復方法および修復後の耐震性能に関する研究が行 われていない.そのため、これまでの研究で優れた修復効果を得られたコンクリー ト充填修復が、軽微な損傷を有する鋼製橋脚に対しても、適用することが可能か明 らかにする必要がある.

本章では、異なる損傷度合の円形断面鋼製橋脚を対象として、各損傷度合につい て効果的な修復方法を提案することを目的とする.第2章において設定した損傷レ ベルのうち損傷レベル 2~4 に相当する損傷を供試体に与え、その後、コンクリート 充填修復を施し、橋脚の損傷度合が異なる場合に対する修復効果を比較・検討する. また、コンクリート充填高さおよびダイアフラムの有無による修復効果の違いにつ いて明らかにする.

4.2 実験計画

4.2.1 実験の流れ

本章では図-4.1 に示すような手順で実験を行う.はじめに地震力を想定した静的 繰り返し載荷(初期載荷実験)により,供試体に所定の損傷を与える.その後,供試 体にコンクリート充填修復を施し,余震等を想定した同様の静的繰り返し載荷(修 復後載荷実験)を行い,修復後の耐震性能を明らかにする.なお,本章では,新品 時の供試体に対する初期載荷実験の結果について示す場合は「損傷前」,初期載荷 実験終了後の供試体および損傷状況について示す場合は「修復前」,修復後載荷実 験の結果および実験後の供試体について示す場合は「修復後」と称する.

4.2.2 実験供試体

本章では、図-4.2 に示す円形断面鋼製橋脚および図-4.3 に示すダイアフラムを有 する円形断面鋼製橋脚の2種類の供試体を6体ずつ、計12体使用した.また、ダ イアフラムの設置高さはコンクリート充填修復の高さに合わせて基部から 254mm(0.5D)と508mm(1.0D)の2種類を用意した.なお、供試体は実物の1/6程度 の大きさを想定しており、径厚比パラメータについては、現行の道路橋示方書の適 用範囲内(0.03 \leq R_t \leq 0.08)で、板厚の薄い断面のものを使用した.これは、地震 により損傷する可能性が比較的高い旧基準で設計された橋脚に、薄肉断面のものが 多いからである.損傷前の供試体諸元を表-4.1に示す.表中の降伏応力 σ_y およびや ング率 E は材料試験の結果であり、それらの値を用いて降伏水平変位 δ_y および降 伏水平荷重 H_yを算出し、軸力比 P/P_yは II 種地盤として算出した.また、3章と同 様に径厚比パラメータ R_tは公称値に加え、括弧内に実験値を併記した.

2 種類の供試体を区別するため、ダイアフラムの無い供試体を U シリーズ (Unstiffened)、ダイアフラムが有る供試体を S シリーズ(Stiffened)と表記する.

図-4.1 実験手順

	Uシリーズ	Sシリーズ	
鋼種	STK400		
載荷点高さ h (mm)	21	15	
外径 D (mm)	508		
板厚 t (mm)	6.36	6.35	
ダイアフラム	無し	あり	
ダイアフラル 凯要古さ。(mm)		254 or 508	
ダイナノノム 設 直 向 さ a (mm)		(0.5D or 1.0D)	
ダイアフラム幅 b _d (mm)	—	50.0	
ダイアフラム板厚 t _d (mm)	—	9.0	
降伏応力 σ _y (N/mm ²)	342	325	
ヤング率 E (kN/mm ²)	207	206	
$ \overline{ } $ $ \overline{ } $ $ \overline{ } $ $ \overline{ } $	0.077	0.077	
在序比バノクーク Kt	(0.109)	(0.104)	
細長比パラメータ λ	0.309	0.302	
降伏水平変位 δ _y (mm)	8.09	7.73	
降伏水平荷重 H _y (kN)	167	159	
軸力比 P/Py	0.166	0.166	

表-4.1 供試体諸元(損傷前)

4.2.3 損傷レベルの定義

本章では,第2章において設定した損傷レベルのうち損傷レベル2,3および4 に相当する損傷を供試体に与える.図-4.4 に損傷レベルの設定方法について再掲す る.各損傷レベルの供試体は,降伏水平変位 δyを基準とした漸増繰り返し載荷によ り,所定の荷重履歴(損傷)まで載荷を行う.また,損傷を与える際には,水平荷重 除荷後の残留変位が h/100以下となるように調整して載荷を行った.

4.2.4 コンクリート充填修復方法

本章では修復方法として、コンクリート充填修復を用いる.鋼製橋脚にコンクリート充填修復を施す場合、コンクリートの充填高さおよび強度が重要なパラメータとなる.このうち強度については、道路橋示方書において、充填部の強度が充填部より上の鋼断面部と比較して著しく大きくなることを避けるため、低強度のコンクリートを用いるのが良いとされている⁶⁾.また、既往の研究および前章までの実験においても低強度のコンクリートで十分な修復効果が得られた^{3),4),7)}.

一方,コンクリート充填高さについては第3章の実験において,損傷レベル4に 相当する比較的大きな損傷を有する円形断面鋼製橋脚に対し,直径の1.5倍(1.5D) の高さまでコンクリートを充填することで高い修復効果が得られた.しかし,損傷 レベル2,3のような最大水平荷重付近までの荷重載荷履歴を有する橋脚では,損 傷レベル4と比べて橋脚基部の残存耐力が大きく,充填高さが1.5Dより低い場合 でも十分な修復効果が得られると考えられる.文献5)では,損傷レベル1~4に相 当する矩形断面鋼製橋脚に対しコンクリート充填修復を行い,充填率が柱高さに対 して20%と低い場合でも優れた修復効果を得ることができた.これは,ダイアフラ ムにより充填コンクリートが拘束され,最大耐力後も座屈の進行が抑制されるため と考えられる.同様に,円形断面鋼製橋脚の場合でもダイアフラムを設けることに より充填高さを低くすることが可能であると考えられる.第2章では,損傷レベル 4に相当する円形断面鋼製橋脚に対し,ダイアフラムに相当するものとしてジベル を設けた場合,充填高さが直径の0.5倍(0.5D)と低い場合でも優れた修復効果が得 られた.

以上のことから本研究では,直径の 1.0 倍(1.0D)と 0.5 倍(0.5D)の 2 種類の充填高 さでコンクリート充填修復を行う.実験供試体はダイアフラムの有無でそれぞれ, 損傷レベル毎に 1.0D と 0.5D を各 1 体とする.表-4.2 に各供試体のコンクリート充 填高さとコンクリート圧縮強度および材齢を示す.充填したコンクリートは呼び強 度 16N/mm²で,普通養生で 28 日以上経過したものを使用した.表中のコンクリー ト圧縮強度は,実際に載荷実験を行った時点で材料試験を行ったものである.

ダイアフラム	供試体名	損傷 レベル	充填 高さ	コンクリート 圧縮強度 (N/mm ²)	材齢 (日)
	CL2-CF0.5D-U	2	0.5D	20.2	61
	CL2-CF1.0D-U	- 2	1.0D	19.1	63
無し	CL3-CF0.5D-U	2	0.5D	18.2	65
(U シリーズ)	CL3-CF1.0D-U	5	1.0D	21.0	84
	CL4-CF0.5D-U	4	0.5D	21.7	89
	CL4-CF1.0D-U		1.0D	21.8	93
	CL2-CF0.5D-S	2	0.5D	16.9	48
	CL2-CF1.0D-S	2	1.0D	16.5	50
あり	CL3-CF0.5D-S	3	0.5D	17.9	59
(S シリーズ)	CL3-CF1.0D-S		1.0D	17.3	57
	CL4-CF0.5D-S	4	0.5D	18.1	52
	CL4-CF1.0D-S	4	1.0D	17.2	55

表-4.2 実験供試体一覧

4.2.5 実験装置および載荷方法

実験載荷装置は第3章で使用したものと同様の装置を用いる.載荷パターンについても同様に降伏水平変位δ,を基準とした漸増繰り返し載荷を行う.詳細については 3.2.6 および 3.2.7 を参照されたい.

4.2.6 ひずみ計測位置

本研究では、図-4.5 に示すように、供試体の載荷方向の圧縮および引張側に、座 屈の影響する高さまで50mm間隔でひずみゲージを設置し,ひずみの計測を行った.

4.3 実験結果

4.3.1 局部座屈部のひずみ値と損傷レベルの関係

損傷前の供試体に対して,損傷レベル4に相当する損傷を与えた初期載荷実験から得られたひずみ-水平変位関係を図-4.6に示す.なお,図-4.7に示すように,座屈部の上部,頂部および下部で計測されたひずみをそれぞれ ε_t , ε_m および ε_b とする.また,繰り返し載荷により鋼断面には圧縮力と引張力が交互に作用するが,図-4.6は圧縮力作用時の結果を示している.

図-4.6 より,損傷レベル2に相当する変位($3\delta_y$)では,ひずみの値は-10000µ程度 であり,これは目視でわずかに座屈が確認できる程度である.損傷レベル3に相当 する変位($4\delta_y$)では,ひずみの値は-30000µ程度であり,これは目視で座屈の進行が 確認できる程度である.また, $4\delta_y$ では座屈頂部の圧縮ひずみ(ϵ_m)が $3\delta_y$ よりも減少 し,図-4.6(c)では 10000µ程度の引張ひずみが生じていることが確認できる.これ は,座屈の進行により,座屈の頂部付近で鋼断面部が伸ばされる挙動を示すためで ある.損傷レベル4に相当する変位($5\delta_y$)では,圧縮ひずみは-70000µ程度に達し, 座屈頂部における引張ひずみの値も 30000µ以上に増加している.

以上のように、各損傷レベルにおける大まかなひずみ値を示した.ひずみ値は損 所度合の判定資料として有効であると考えられる.しかし、本研究で使用したひず みゲージによるひずみの測定は、実物の橋脚では計測器の設置やコストの問題が生 じるため、橋脚のひずみ測定方法の検討が今後の課題であると言える.

図-4.6 損傷レベル毎のひずみ値の分布

図-4.7 座屈部のひずみ測定位置

4.3.2 供試体の損傷状況

実験後の供試体の損傷状況を図-4.8 に示す.ダイアフラムが有る場合では,損傷 形態は,損傷レベルおよびコンクリート充填高さにより異なり,大きく次の3つの 損傷タイプに分けられる.損傷タイプについて以下に示す.また,参考値として各 損傷タイプにおけるひずみ値についても述べる.なお,修復後の実験で生じたひず み値については,修復後の実験開始時にひずみゲージのイニシャル測定を行ってい る.

(1) 損傷タイプ A

このタイプは図-4.8(a)に示すように、コンクリート充填部では座屈は進行せず、 充填部直上に新たに座屈が発生したケースである.損傷レベル2のように、基部に ある程度の耐力が残っている橋脚に対して、充填高さが低い場合にこのような損傷 が生じた.これは、コンクリート充填部の強度が著しく増加し、充填部が基部と同 様の働きをすると考えられる.最大水平荷重は損傷前と比較して増加し、相対的に 弱くなった充填部直上で座屈が生じた.このような場合には、コンクリート無充填 部に損傷が集中するため、損傷前以上の変形性能は期待できない.このタイプには 損傷レベル2の充填高さ0.5D (CL2-CF0.5D-S)が該当した. 損傷タイプAのよう に、修復箇所の強度が著しく増加した場合、本来損傷が生じるべき部位ではなく、 想定外の部位に損傷が生じる可能性がある.そのため、修復後であっても、そのよ うな損傷は避けるべきであると考える.充填部に生じた座屈部では、圧縮ひずみは 最大でも-10000µ程度であり、最大水平荷重到達後も増加することは無かった.一 方で、充填部直上の鋼断面部では、最大水平荷重到達直後のサイクルから圧縮ひず みが著しく増加し、最大で-40000µ程度まで達した.

(2) 損傷タイプ B

このタイプは図-4.8(b)に示すように、コンクリート充填部の座屈がさらに進行す るとともに、充填部直上の鋼断面部でも座屈が発生したケースである.このタイプ では、最大水平荷重に到達する前の変位までは充填部でのみ座屈が進行し、最大水 平荷重以降では充填部直上で新たに座屈が発生する損傷形態となった.これは、充 填部で損傷が進行しているものの、座屈部の圧縮ひずみが-25000µ程度に達して以 降、ダイアフラムによる充填コンクリートの拘束効果により、充填部ではそれ以上 損傷が進行しなくなる.この段階で、損傷タイプAと同様に、充填部が基部と同様 の働きをするため、最大水平荷重は損傷前よりも高くなり、充填部直上でも座屈が 発生したと考えられる.このタイプには損傷レベル 2 の充填高さ 1.0D (CL2-CF1.0D-S)、損傷レベル 3 の充填高さ 0.5D (L3-CF0.5D-S)、損傷レベル 3 の充 填高さ 1.0D (CL3-CF1.0D-S) が該当した.

充填部において、座屈上部および下部では、最大-25000μ程度の圧縮ひずみが生

じ,座屈頂部では 100000μ以上の引張ひずみが生じた.また,充填部直上の鋼断面 部では,最大-50000μ程度の圧縮ひずみおよび 25000μ程度の引張ひずみが生じた. (3) 損傷タイプ C

このタイプは図-4.8(c)に示すようにコンクリート充填部で生じた座屈部のみでさらに座屈 が進行したケースである.これは、橋脚基部にある程度の損傷が生じているため、コンクリ ート充填により充填部の強度が損傷前に対して著しく増加することなく、充填部と充填部よ り上の鋼断面部の強度差が小さくなったためであると考えられる.このタイプには損傷レベ ル4の充填高さ 0.5D (CL4-CF0.5D-S),損傷レベル4の充填高さ 1.0D (CL4-CF1.0D-S)が該 当した.この損傷タイプでは、充填部に損傷が集中し、充填部におけるひずみの変動が著し く、大変位レベルでは圧縮が-50000µ,引張が 100000µ以上のひずみ値を確認した.一方で、 充填部直上ではひずみの変動は小さく、10δ_y以降の大変位レベルでも-10000µ 程度にとどま った.

なお,Uシリーズの損傷形態は一様で,全ての供試体が損傷タイプCに該当した. これは,充填コンクリートのみの修復であり,ダイアフラムによる鉛直方向の拘束 力が無いため,軸圧縮力作用時にこう断面部が沈み込むような形で最初に生じた座 屈が進行することとなり,損傷が充填部に集中したと考えられる.

65

(a) 損傷タイプ A (CL2-CF0.5D-S)

(b) 損傷タイプ B(CL2-CF1. OD-S)

(c) 損傷タイプ C (CL4-CF1. OD-S)

図−4.8 修復後の供試体損傷状況

4.3.3 水平荷重-水平変位履歴曲線

実験から得られた水平荷重-水平変位履歴曲線を図-4.9 および図-4.10 に示す. なお, 図の縦軸は降伏水平荷重 H_y , 横軸は降伏水平変位 δ_y でそれぞれ無次元化している. また, 比較のために U シリーズでは 損傷レベル 4 の充填高さ 1.0D (CL4-CF1.0D-U), S シリーズでは損傷レベル 4 の充填高さ 1.0D (CL4-CF1.0D-S)の損傷前(無充填)の履歴曲線を破線で重ねて示す.

Uシリーズでは、図-4.9(a)に示すように、損傷レベル2の充填高さが0.5Dの場合では、損傷前と似た履歴形状となった.同様の傾向は、図-4.9(c)、(e)に示す損傷レベル3、4の充填高さが0.5Dでも見られた.一方、図-4.9(d)に示す損傷レベル2の充填高さが1.0Dの場合では、RC柱において見られるようなピンチング挙動が見られ、損傷前と比べて横に長い履歴形状となった.図-4.9(d)および(f)に示す損傷レベル3、4の充填高さが1.0Dでも同様の傾向が見られた.

S シリーズでは、前項に示した損傷タイプと履歴形状に関係性が見られた.図 -4.10(a)のように, 損傷タイプ A に該当する損傷レベル 2 の充填高さ 0.5D (CL2-CF0.5D-S)では,損傷前に比べて最大水平荷重は大きく増加したが,履歴形状 に大きな変化は無く,最大水平荷重到達後のサイクルで急激な荷重の低下が見られ る. なお, 損傷レベル2の充填高さ1.0D (CL2-CF1.0D-S), 損傷レベル3の充填高 さ 0.5D (CL3-CF0.5D-S)でも同様の傾向が見られた. これは、コンクリート充填部 より上の鋼断面部に座屈が発生したことで, 充填コンクリートによる座屈拘束効果 が発揮されなかったためと考えられる.このような場合には、充填部と鋼断面部の 強度差を緩和し、鋼断面部での座屈を防ぐための対策が必要である.図-4.10(d)の ように,損傷タイプBに該当する損傷レベル3の充填高さ1.0D (CL3-CF1.0D-S)で は,損傷前よりも大きな変位で最大水平荷重に到達し,横に長い履歴形状となった. 図-4.10(f)のように、損傷タイプ C に該当する損傷レベル 4 の充填高さ 1.0D (CL4-CF1.0D-S)では、コンクリート充填部に発生した座屈部でのみ損傷が進行する ため,最大水平荷重後の荷重の低下が著しく小さく,非常に優れた変形性能を示し ている. なお, 損傷レベル 4 の充填高さ 0.5D (CL4-CF0.5D-S)でも同様の傾向が見 られた.

図-4.9 水平荷重-水平変位履歴曲線(Uシリーズ)

図-4.10 水平荷重-水平変位履歴曲線(Sシリーズ)

4.3.4 損傷レベルおよび修復方法の関係

図-4.11 に損傷レベル毎の包絡線を示す.また,比較のために初期載荷実験においての損傷レベル 4 まで載荷を行った結果(CL4-CF1.0D-U)を破線(図中の NEW)で示す.

図-4.11(a)に示す損傷レベル2では,充填高さが0.5Dの場合よりも1.0Dの方が最 大水平荷重が高く,最大水平荷重に大きな変位で到達する結果となった.これは他 の損傷レベルでも同様の傾向が見られた.Uシリーズの充填高さ0.5Dの供試体 (CL2-CF0.5D-U)では,損傷前とほぼ同様な曲線となり,その他の供試体では,損 傷前に対して最大水平荷重が10%以上高くなる結果となった.

図-4.11(b)に示す損傷レベル3において、Uシリーズの充填高さ1.0Dの場合では、損傷前と 同等まで最大水平荷重が回復しているのに対し、0.5Dの場合では70%程度までの回復にとど まった.Sシリーズでは、充填高さ0.5D、1.0D共に損傷前に対してそれぞれ14%および23% 高くなる結果となった.

図-4.11(c)に示す損傷レベル4おいて、Uシリーズでは充填高さが0.5D,1.0D共 に最大水平荷重は損傷前に対して70%程度となった.一方、Sシリーズでは、充填 高さが0.5D,1.0D共に損傷前と同等まで回復する結果となった.

ダイアフラムの有無により比較すると、図-4.11 より、全ての損傷レベルにおいて、Sシリーズの方がUシリーズに対して最大水平荷重が高く、さらに、大きな変位で最大水平荷重に到達する結果となった.

なお、Sシリーズでは最大水平荷重到達後に荷重が急激に低下している供試体が 多いことがわかる.これは損傷形態による影響で,前述したように,損傷タイプA, Bのようにコンクリート充填部直上の鋼断面部で座屈が発生した場合である.

また,損傷タイプにより荷重が急激に低下する変位に違いが見られる.損傷タイプ Aでは、コンクリート充填部では損傷が進行せず、充填部直上の鋼断面部に損傷が 集中するため、早い段階で荷重が低下する傾向が見られる.損傷タイプBでは、最 大水平荷重付近まではコンクリート充填部で損傷が進行した後に充填部直上で損 傷が進行する.そのため、損傷タイプBでは損傷タイプAよりも大変位レベルに て急激な荷重の低下が発生する傾向が見られる.なお、損傷タイプBに該当する損 傷レベル4の充填高さ0.5D (CL4-CF0.5D-S)では、充填部直上で座屈が発生する変 位が大きく、損傷が進展する前に実験を終了したため、急激な荷重の低下は見られ ていない.

70

(a) 損傷レベル 2

4.4 修復方法の評価

4.4.1 最大水平荷重および曲げ剛性による評価

表-4.3に損傷前および修復後の最大水平荷重と損傷前に対する修復後の最大水平荷 重の比を示す.なお,損傷レベル2は最大水平荷重に達していないため,それぞれ 損傷レベル3,4の損傷前供試体の平均値を用いている(表中*印).Uシリーズの内, 損傷レベル4の充填高さ0.5D(CL4-CF0.5D-U)では,損傷前の供試体に対して一方向 載荷(pushover)により損傷を与えたため,評価の段階では損傷前の値に損傷レベル4 の充填高さ1.0D(CL4-CF1.0D-U)の結果を用いている(表中**印).また,表-4.4に修 復前の保有剛性 K₁および修復後の曲げ剛性 K₂を示す.K₁および K₂は損傷前の初 期剛性 K₀で無次元化した.ここで,K₀,K₁および K₂は水平荷重-水平変位履歴の 除荷域の傾きである.K₀は初期載荷実験の1δy載荷後,K₁は初期載荷実験の最終サ イクル,K₂は修復後載荷実験の1δy載荷後の履歴から算出した.

表-4.3 より, 修復後の最大水平荷重で比較すると, U シリーズでは損傷レベル 2 の充填高さ 0.5D(CL2-CF0.5D-U), 損傷レベル 3 の充填高さ 1.0D(CL3-CF1.0D-U)の 2 体は損傷前に対して 10%以内となり, 目標性能を満足する結果となった. また, 損傷レベル 2 の充填高さ 1.0D(CL2-CF1.0D-U)は 16%増加している. 一方で, 損傷レベル 3 の充填高さ 0.5D(CL3-CF0.5D-U)は 21%, 損傷レベル 4 の充填高さ 0.5D (CL4-CF0.5D-U)は 30%, 損傷レベル 4 の充填高さ 1.0D(CL4-CF1.0D-U)は 28%減少している. S シリーズでは, 損傷レベル 4 の充填高さ 1.0D(CL4-CF0.5D-S, CL4-CF1.0D-S)が損傷前に対して 10%以内となった. 充填高さが 0.5D の供試体(CL2-CF0.5D-S, CL3-CF0.5D-S)では, それぞれ 12%および 14%増加しており, 目標とする性能に近い結果となったが, いずれも損傷がコンクリート充填部直上に集中した(損傷タイ プ A). 一方, 充填高さが 1.0D の供試体(CL2-CF1.0D-S, CL3-CF1.0D-S)では, それぞれ 28%および 23%増加する結果となった.

損傷前と比較して最大水平荷重が著しく増加することは,相対的に弱くなった支 承部,フーチングおよびアンカーボルトなどの新たな部位に損傷が生じることも考 えられる.そのため,特に損傷が小さい橋脚に対しては,充填高さを高くすること やダイアフラムを設けることは望ましくないと考えられる.

修復後の剛性については表-4.4 より,U シリーズでは損傷レベル 4 の充填高さ 1.0D(CL4-CF1.0D-U)の場合に損傷前に対して 24%減とやや低い結果となったもの の,その他の供試体で 20%以内にまで回復しており,十分な修復効果が得られた. S シリーズでは,損傷レベル 4 の充填高さ 0.5D および 1.0D(CL4-CF0.5D-S および CL4-CF1.0D-S)では,損傷前に対して約 20%,その他の供試体においては 10%以内 にまで回復している. 以上より,損傷レベル2に相当する比較的軽微な損傷に対しては,ダイアフラム を設けない場合では充填高さを1.0D以上,ダイアフラムを設ける場合では0.5D以 上とすることで耐力が著しく増加してしまう恐れがある.

損傷レベル3に対しては、ダイアフラムを設けない場合は、充填高さが0.5Dで は十分な耐力の回復は期待できないため、1.0Dとすることが望ましい.また、ダイ アフラムを設けた場合は最大水平荷重が過大に増加してしまう恐れがある.

損傷レベル4に対しては、ダイアフラムを設けない場合では、1.0Dまでの充填高 さでは十分な最大水平荷重の回復は期待できない.一方、ダイアフラムを設ける場 合は、充填高さを0.5Dとすることで最大水平荷重は十分に回復する.

4.4.2 塑性率による評価

表-4.5 に損傷前および修復後の塑性率の一覧を示す.

修復後の塑性率は、U シリーズでは、充填高さが 0.5D の場合において、損傷前 と同等まで回復し、充填高さが 1.0D の場合では、いずれの供試体も損傷前よりも 向上した.S シリーズでは、全ての供試体において損傷前よりも向上し、特に、損 傷レベル 3 および 4 の充填高さ 1.0D の場合(CL3-CF1.0D-S および CL4-CF1.0D-S) は、それぞれ 272%、380%となり大きな向上が見られた.

ダイアフラムの無い円形断面鋼製橋脚では充填高さが 0.5D のように低い場合, 充填コンクリートと鋼断面の接触面が少ないため摩擦力が小さくなり,座屈の進行 が抑制できず,高い変形性能が得られないと考えられる.

ダイアフラムを設けた場合では、充填部で損傷が進行する損傷タイプでは変形性 能が大きく向上する(損傷タイプ B および損傷タイプ C). これは、ダイアフラムが あることにより、圧縮力の一部を充填コンクリートが受け持つことで、損傷の進行 が緩やかになるためと考えられる.一方、損傷タイプ A となった場合は塑性率大き な向上は期待できない.すなわち、鋼製橋脚の損傷が比較的軽微な場合においては、 コンクリート充填部より上の鋼断面部に新たに座屈が生じることで、高い変形性能 が得られない場合がある.

供封休夕	損傷前	修復後	修復谷 / 坦復前		
供 两 体 石	H_{max}/H_y	H_{max}/H_y	修復夜/1月房刊		
CL2-CF0.5D-U	1.50^{*}	1.60	1.07		
CL2-CF1.0D-U	1.50^{*}	1.74	1.16		
CL3-CF0.5D-U	1.54	1.21	0.79		
CL3-CF1.0D-U	1.42	1.55	1.09		
CL4-CF0.5D-U	1.52**	1.07	0.70		
CL4-CF1.0D-U	1.52	1.09	0.72		
CL2-CF0.5D-S	1.61*	1.81	1.12		
CL2-CF1.0D-S	1.61*	2.07	1.28		
CL3-CF0.5D-S	1.62	1.84	1.14		
CL3-CF1.0D-S	1.62	1.99	1.23		
CL4-CF0.5D-S	1.62	1.57	0.97		
CL4-CF1.0D-S	1.60	1.71	1.07		

表-4.3 最大水平荷重

表-4.4 修復前保有剛性および修復後初期剛性

供封体友	修復前保有剛性	修復後保有剛性	
供訊件名	$\mathbf{K}_1/\mathbf{K}_0$	K_2/K_0	
CL2-CF0.5D-U	0.96	1.02	
CL2-CF1.0D-U	0.94	1.00	
CL3-CF0.5D-U	0.87	0.95	
CL3-CF1.0D-U	0.83	1.05	
CL4-CF0.5D-U	0.59^{**}	0.84^{**}	
CL4-CF1.0D-U	0.59	0.76	
CL2-CF0.5D-S	0.94	0.96	
CL2-CF1.0D-S	0.92	1.00	
CL3-CF0.5D-S	0.85	0.93	
CL3-CF1.0D-S	0.83	0.98	
CL4-CF0.5D-S	0.69	0.79	
CL4-CF1.0D-S	0.62	0.90	

供試体名	損傷前	修復後	修復後/損傷前
CL2-CF0.5D-U	3.54*	3.46	0.98
CL2-CF1.0D-U	3.54^{*}	5.16	1.46
CL3-CF0.5D-U	3.28	3.19	0.97
CL3-CF1.0D-U	3.10	4.05	1.31
CL4-CF0.5D-U	3.27**	3.25	1.00
CL4-CF1.0D-U	3.27	5.66	1.73
CL2-CF0.5D-S	3.37*	4.32	1.28
CL2-CF1.0D-S	3.37*	6.24	1.85
CL3-CF0.5D-S	3.32	5.37	1.62
CL3-CF1.0D-S	3.40	9.24	2.72
CL4-CF0.5D-S	3.34	6.40	1.92
CL4-CF1.0D-S	3.40	12.93	3.80

表-4.5 塑性率

4.5 まとめ

本章では、地震により発生することが予想される、比較的軽微な損傷(損傷レベ ル2および3)に対する適切な修復方法を提案することを目的として、損傷レベル 2~4までの異なる損傷を有する円形断面鋼製橋脚に対して、充填高さおよびダイア フラムの有無を変えてコンクリート充填修復を行った.修復後の耐震性能および損 傷形態を明らかにし、各損傷レベルにおける効果的な修復方法を示した.以下に本 章で得られた結論をまとめる

- 最大水平荷重を超えない程度の損傷レベル2では、ダイアフラムを設けず、0.5D までコンクリートを充填することで、十分な修復効果が期待できる.ダイアフ ラムを設置した場合および 1.0D まで充填した場合には最大水平荷重が 10%を 超えて増加するため望ましくない.
- 損傷レベル3では、ダイアフラムを設けない場合では充填高さを1.0Dとすることで十分な最大水平荷重の回復および変形性能の向上が可能であることを示した.ダイアフラムを設ける場合では、最大水平荷重が大幅に増加し、充填部より上の鋼断面部で座屈が生じてしまうため望ましくない.
- 3. 以上のように、橋脚の損傷レベルにより充填高さおよびダイアフラムの有無を 適切に選択しなければ、効果的な修復方法とはなりえない.本章で使用した、 薄肉の断面(R_t=0.077)を有する橋脚の場合、比較的軽微な損傷ついては、最大水 平荷重の大幅な増加および充填部より上での損傷を避けるため、ダイアフラム を設置せず、損傷レベル2では充填高さ0.5D、損傷レベル3では1.0D程度と することで、十分な耐震性能(最大水平荷重±10%および曲げ剛性±20%)まで回復 することができる.損傷レベル4についてはダイアフラムを設置するか、3章 で示したように1.5D程度の高さまで充填することで、高い修復効果が期待でき る.

参考文献

- 青木徹彦、山田将樹、林幸司:地震時破損後に補修した橋脚モデルの耐震載荷 実験と耐震設計の考え方、鋼製橋脚の非線形数値解析と耐震設計に関する論文 集,土木学会・構造工学委員会,pp.101-106,1997.3.
- 2) 鈴木森晶,青木徹彦,野村和弘:簡易補修後鋼製ラーメン橋脚の耐震性能に関 する実験的研究,構造工学論文集, Vol.46A, pp.135-142, 2000.3.
- 3) M Suzuki, H Omatsu, A Imanaka, T Aoki : Seismic resistance capacity of repaired steel bridge piers after severe earthquake, International Conference on STRUCTURAL CONDITION ASSESMENT, MONITORING AND IMPROVEMENT, pp.291-298, December 2005.
- 4) 尾松大道,鈴木森晶,青木徹彦:損傷した矩形断面鋼製橋脚の補修後の耐震性能に 関する研究,構造工学論文集, Vol.52A, pp.445-453, 2006.3.
- 5) 嶋口儀之,鈴木森晶,太田樹,青木徹彦:損傷レベルが異なる矩形断面鋼製橋 脚のコンクリート充填修復と耐震性能に関する研究,構造工学論文集,Vol.59A, pp.484-492, 2013.3.
- 6) (社)日本道路協会:道路橋示方書. 同解説 V耐震設計編, 2012.3.
- 7) 嶋口儀之,鈴木森晶,太田樹,青木徹彦:局部座屈が生じた円形断面鋼製橋脚の修復方法に関する研究,構造工学論文集, Vol. 58A, pp. 277-289, 2012.3.

第5章 径厚比および損傷度合が異なる円形断面鋼製橋脚に対する コンクリート充填修復と耐震性能

5.1 まえがき

前章までに、地震により基部に局部座屈が生じた円形断面鋼製橋脚を対象に早期 復旧が可能な修復方法について検討してきた.第3章では、コンクリート充填、鋼 板巻き立ておよび補剛材溶接といった修復方法の提案を行い、その修復効果につい て実験的な検討を行った.さらに、第4章において、損傷度合いの異なる円形断面 鋼製橋脚に対するコンクリート充填修復の効果について検討した.この中で同様の 修復方法を用いた場合においても損傷度合いにより修復後の耐震性能および損傷 形態が大きく異なり、損傷度合いに合わせて適切に修復方法を選択する必要がある ことを示した.

前章までに、コンクリート充填による修復が有効な手法であることを示したが、 実際に実橋脚の修復として適用するためには、対象となる鋼製橋脚の構造パラメー タを考慮することが重要である.第3章においては、同様の修復方法でも円形断面 鋼製橋脚の径厚比パラメータにより修復効果に違いがみられた.しかし、ここで対 象とした供試体は損傷が極めて大きく(損傷レベル4相当)、比較的軽微な損傷につ いても検討する必要が有る.

そこで本章では、現行基準の範囲のうち設計年次が古く、板厚の比較的薄い橋脚 を中心に、径厚比パラメータが異なる円形断面鋼製橋脚を対象として、コンクリー ト充填修復を行い、修復後の耐震性能を明らかにする.橋脚の損傷の程度としては、 最大耐力を超え、耐力がやや低下する程度の損傷(損傷レベル3相当)を想定し、コ ンクリート充填高さおよびダイアフラムの有無を変えて修復を行うことで、径厚比 パラメータが異なる場合について効果的な修復方法を示す.また、適切な修復方法 を判断するための資料の提供を目的として、修復後の円形断面鋼製橋脚のひずみレ ベルに着目し、修復後の損傷形態との関係について示す.

5.2 実験計画

5.2.1 実験の流れ

実験は第4章と同様の手順で行う.はじめに地震力を想定した静的繰り返し載荷 (初期載荷実験)により,供試体に所定の損傷を与える.その後,供試体にコンクリ ート充填修復を施す.さらに,規模の大きな余震等を想定し,同様の静的繰り返し 載荷(修復後載荷実験)を再度行い,修復後の耐震性能を明らかにする.また,「損傷 前」,「修復前」および「修復後」の呼称についても同様である.詳細は 4.2.1 を参照されたい.

5.2.2 実験供試体

本章では、実物の 1/5 程度の大きさを想定した円形断面鋼製橋脚供試体を 12 体 使用する.表-5.1 に損傷前(設計時)の供試体諸元を示す.また、供試体の基本的な 形状は第4章と同様である.供試体の概要図については、図-4.2 および 4.3 を参照 されたい.表-5.1 の降伏応力 σ_y およびヤング率 E は材料試験結果を示している. 供試体はすべて外径 D=609.6 mmで、板厚 t を変えることで径厚比パラメータ R_tを変 化させた.径厚比パラメータ R_tは式(5.1)により算出し、2012 年版の道路橋示方書 に示されるコンクリートを充填しない円形断面鋼製橋脚に対する適用範囲内(0.03 \leq R_t \leq 0.08)とする.このうち、適用範囲内の標準的な板厚から、板厚の薄い領 域に着目し、0.078、0.065 および 0.048 の 3 種類を設定した¹⁾.これは、2章でも述 べたように、既存の円形断面鋼製橋脚のうち、設計年次の旧い橋脚は現行基準内で あっても比較的薄肉断面のものが多く、地震により損傷が生じる可能性が高いから である.表中には公称値(σ_y =235N/mm²、E=200kN/mm²)より算出した値に加え、材 料試験結果より算出した値を括弧内に併記する.各径厚比パラメータごとにダイア フラムの有るものと無いものを用意し、ダイアフラムの位置はコンクリート充填高 さに合わせ、外径 D の 0.5 倍(305mm)および 1.0 倍(610mm)の高さに設置している.

橋脚の損傷度合いとしては、これまでに述べた4段階の損傷レベルのうち、最大 水平荷重到達後に荷重がやや低下する範囲の損傷レベル3を想定し、供試体に損傷 を与えるものとする.また、地震後に鋼製橋脚に生じる残留水平変位については、 橋脚高さhに対して h/100以下を想定しており、損傷を与えた一度目の載荷におい て、残留水平変位が h/100以下となるように調整し載荷を終了した.

$$R_t = \frac{R}{t} \frac{\sigma_y}{E} \sqrt{3(1-\mu^2)}$$
(5.1)

ここで、 $R: 板厚中心位置の半径, t: 板厚, \sigma_y: 降伏応力, E: ヤング率, <math>\mu: ポア$ ソン比である.

鋼種			STK400	
外径 D	(mm)	609.6		
載荷点高さ h	(mm)		3460	
ダイアフラム板厚 t _D	(mm)		9	
ダイアフラム幅 bp	(mm)		50	
ダイアフラムの位置	h _D (mm)	305 or 610		
板厚 t	(mm)	7.5	8.9	11.9
降伏応力 σ _y	(N/mm^2)	348	355	360
ヤング率 E	(kN/mm^2)	209	208	210
径回比パラメータ P		0.078	0.065	0.049
		(0.112)	(0.095)	(0.072)
細長比パラメータ λ		0.355	0.355	0.357
降伏水平荷重 H _y	(kN)	183.8	223.0	296.7
降伏水平変位 δ _y	(mm)	19.0	19.5	19.6
軸力比 P/Py		0.129	0.128	0.128

表-5.1 供試体諸元

5.2.3 コンクリート充填修復方法

修復方法は、充填高さおよびダイアフラムの有無をパラメータとしてコンクリート充填修復を行う.前章までに、損傷レベル3の場合、充填高さについては供試体外径Dの1.0倍(1.0D)程度まで充填することで損傷前と同等の耐力まで回復させることができるという結果が得られている²⁾.また、充填高さ1.5D以上では損傷前と比べ、耐力の大幅な増加が考えられる.そのため、コンクリート充填高さは1.0Dおよび0.5Dの2種類とし、ダイアフラムの有無で計4種類の修復を行う.充填したコンクリートは呼び強度16N/mm²で、普通養生で28日以上経過後に実験を行った.表-5.2に供試体と修復方法の一覧および充填したコンクリートの圧縮強度と材齢を示す.第4章と同様に供試体名の-U(Unstiffened)はダイアフラムなし、

-S(Stiffened)はダイアフラム有りを表す. なお,本研究では普通コンクリートを用いて実験を行っているが,余震に対応するためには施工後の早い段階で耐力を確保する必要があり,実際の応急復旧においては,早強ポルトランドセメントを使用するなどの対策が必要である.

供試体名	R _t	充填 高さ	ダイアフラム	コンクリート 圧縮強度 (N/mm ²)	材齢 (日)
T7.5-CF0.5D-U	0.078 -	0.5D	4 11 - 1	20.8	48
T7.5-CF1.0D-U		1.0D		23.2	54
T7.5-CF0.5D-S		0.5D	t IA	19.7	52
T7.5-CF1.0D-S		1.0D	Ø 9	22.8	55
T8.9-CF0.5D-U	0.065	0.5D	ánri i	21.7	48
T8.9-CF1.0D-U		1.0D		22.7	47
T8.9-CF0.5D-S		0.5D	t IA	23.0	46
T8.9-CF1.0D-S		1.0D	Ø 9	23.9	45
T11.9-CF0.5D-U		0.5D	ÁTTL 1	19.8	49
T11.9-CF1.0D-U	0.040	1.0D		20.9	55
T11.9-CF0.5D-S	0.049	0.5D	ちん	22.2	52
T11.9-CF1.0D-S		1.0D	めり	21.0	48

表-5.2 供試体一覧

5.2.4 実験装置および載荷方法

実験載荷装置は第3章および第4章で使用したものと同様の装置を用いる.載荷 パターンについても同様に降伏水平変位δyを基準とした漸増繰り返し載荷を行う. 詳細については3.2.6および3.2.7を参照されたい.また,第4章と同様に,ひずみ ゲージによるひずみの計測を行った(4.2.6参照).

5.3 実験結果

5.3.1 供試体損傷状況

初期載荷および修復後載荷実験終了時における供試体の損傷状況の例を図-5.1 に 示す.損傷前の供試体に対する一度目の載荷において各供試体は,水平荷重-水平 変位関係および損傷形態についてほぼ同様な挙動を示し,すべての供試体(修復前) は図-5.1(a)のように柱基部に目視で確認できる程度の座屈が生じた.

一方で,図-5.1(b)~(d)に示すように修復後の損傷形態は,径厚比パラメータおよび修復方法により,異なる結果となった.前章まで,修復後の損傷形態を3つの損傷タイプに分類し評価してきた¹⁰⁾.本章ではすべての供試体がBおよびCの2つのタイプとなった.なお,比較のために第4章において見られた損傷タイプAの例を図-5.1(b)に示す.

a) 損傷タイプ A

板厚が薄く損傷が小さい供試体(損傷レベル 2)に対してダイアフラムを設置した 場合,図-5.1(b)に示すように,コンクリート充填部では損傷が進行せず,充填部直 上の鋼断面部に新たに座屈が発生した²⁾.

b) 損傷タイプ B

損傷レベル 3 に対してダイアフラムを設置した場合,標準的な板厚の供試体 (R_t=0.049)については充填高さ 0.5D,板厚が薄い供試体(R_t=0.065 および 0.078)につ いては充填高さによらず,図-5.1(c)に示すように,コンクリート充填部の座屈がさ らに進行し,充填部直上でも座屈が発生した.このタイプでは,最大水平荷重に到 達する前の変位までは充填部でのみ座屈が進行し,最大水平荷重以降では充填部直 上で新たに座屈が発生する損傷形態となった.

c) 損傷タイプC

ダイアフラムを設置しない場合および標準的な板厚の供試体(R_t=0.049)に対して ダイアフラムを設置し,充填高さ 1.0D とした場合は図-5.1(d)に示すようにコンク リート充填部の座屈部のみでさらに損傷が進行した.

(a) 修復前 (R_t=0.049, 損傷レベル3)

(b)損傷タイプA²⁾ (R_t=0.077, 損傷レベル2)

(c)損傷タイプ B (R_t=0.049, 損傷レベル 3)

(d)損傷タイプ C (R_t=0.049, 損傷レベル 3)

図-5.1 供試体損傷状況

5.3.2 水平荷重-水平変位履歴曲線

実験から得られた水平荷重-水平変位履歴曲線を図-5.2 および図-5.3 に示す. 比較のために初期載荷実験の履歴を破線,修復後載荷実験の履歴を実線で示す. なお,図の縦軸は降伏水平荷重 H_y,横軸は降伏水平変位δ_yでそれぞれ無次元化している.また,図中にそれぞれの損傷タイプを示す.

図-5.2 より、ダイアフラムなし(-U)の場合、修復後の履歴は最初の載荷時の履歴 と比較して横に長いサドル型の履歴形状となり、最大水平荷重に到達するまでの水 平変位が増加している.これは、座屈発生箇所において充填コンクリートに亀裂が 生じ、RC柱と似た挙動を示したためと考えられる.板厚が薄い R_t=0.078 の場合、 コンクリート充填高さ 0.5D では水平荷重の回復がほとんど見られず、小さな履歴 となっているが、充填高さを 1.0D とすることで水平荷重の回復量が大きく増加し ている.一方で、R_t=0.065 および R_t=0.049 の供試体では、水平荷重の回復量につい てもやや増加しているが、R_t=0.078 の場合ほど顕著な差はない.また、いずれの供 試体についても、各サイクルの水平変位 2δy 付近で一度水平荷重が低下した後、再 び上昇するピンチング挙動が見られた.これは充填高さ 1.0D の場合に、より顕著 に見られた.以上に示すように、ダイアフラムなし(-U)の場合は充填高さが 0.5D で は十分な修復効果が得られない.

図-5.3 より、ダイアフラム有り(-S)の場合、径厚比パラメータの違いにより、履 歴の形状が大きく異なる結果となった.板厚が薄い R₁=0.078 およびやや薄い Rt=0.065の場合,充填高さによらずダイアフラムがない場合と同様にピンチング挙 動が見られるが,最大水平荷重到達後の最終サイクルで急激に荷重が低下する履歴 となっている.これは、コンクリート充填部より上の鋼断面部に新たな座屈が発生 したことで,充填コンクリートによる座屈拘束効果が発揮されなかったためと考え られる.標準的な板厚の R₁=0.049 の場合,他と異なる履歴を示し,図-5.3(c)に示す 充填高さ 0.5D では紡錘型の履歴を示し、最大荷重到達後は緩やかに荷重が低下し ている.これは、コンクリート充填部の座屈がさらに進行するとともに、充填部直 上の鋼断面部でも座屈が発生し、損傷が集中しなかったためである.図-5.3(f)に示 す充填高さ 1.0D では、ダイアフラムがない場合と同様の傾向を示したが、より荷 重の低下が緩やかで、非常に安定した履歴となっている、これは、ダイアフラムよ り上に座屈が発生せず、軸圧縮力がコンクリートに伝達されたことで、座屈の進行 を抑制したためと考えられる.以上より, R_tが大きいほど, コンクリート充填部と 鋼断面部の強度差が大きくなり,充填部より上で損傷が進行する可能性が高くなる. そのため、R_tが大きい場合については、ダイアフラムを設置しない修復方法が望ま しい.

84

5.3.3 径厚比パラメータの違いによる比較

図-5.4 に水平荷重-水平変位履歴曲線の各サイクルの折り返し点を結んだ包絡線 を径厚比パラメータごとに示す.また,表-5.3 に損傷前の最大水平荷重 H_{max} ,修復 後の最大水平荷重 H_{max} 'を降伏水平荷重 H_y で無次元化した値および損傷前と修復 の比を示す.表-5.4 に損傷前の塑性率 μ_{95} ,修復後の塑性率 μ_{95} 'および損傷前と修復 後の比を示す.本研究では最大水平荷重に達した後,最大水平荷重の 95%となった 時の水平変位を δ_{95} とし,降伏水平変位 δ_y で無次元化した値を塑性率 μ_{95} として評 価する.また,表-5.5 に修復前保有剛性 K_1 および修復後の初期剛性 K_2 を示す. K_1 および K_2 は損傷前の初期剛性 K_0 で無次元化した.ここで, K_0 , K_1 および K_2 は水 平荷重-水平変位履歴の除荷域の傾きである. K_0 は初期載荷実験の $1\delta_y$ 載荷後, K_1 は初期載荷実験の最終サイクル, K_2 は修復後載荷実験の $1\delta_y$ 載荷後の履歴から算出 した.

図-5.4 に示すように、ダイアフラムがない修復方法の場合、径厚比パラメータに より修復後の最大水平荷重に差が見られるが、最大水平荷重到達以降はよく似た傾 向を示し、同じような傾きで荷重が低下していることが分かる.また、図-5.4(a)お よび表-5.3 より、R_t=0.078 の場合、修復後の最大荷重は充填高さ 0.5D では 76%に 留まっているが、1.0D では 99%まで回復しており、コンクリート充填高さの違い による影響が顕著に見られる.これは充填高さが高いほど、充填コンクリートと鋼 管の接触面が増加し、摩擦力によりコンクリートに伝達される軸力の割合が大きく なるためと考えられる. R_t=0.065 および 0.049 の場合も、充填高さにより最大荷重 に差が見られるが、いずれも損傷前の±10%の範囲に入っており、充填高さの影響 は板厚が薄い場合(R_t=0.078)と比べると相対的に小さくなっている.塑性率につい て比較すると、表-5.4 より、充填高さ 0.5D では径厚比パラメータによらず損傷前 と同程度であるが、1.0D では 30%程度向上している.最大水平荷重の回復だけで なく、コンクリート充填による変形性能の向上を期待するのであれば、径厚比パラ メータが小さい場合についても 1.0D 程度の高さまで充填するのが良いと考えられ る.

ダイアフラムが有る場合は径厚比パラメータにより水平荷重の回復量と,最大水 平荷重到達後の挙動に違いが見られた.図-5.4(a)および(b)に示すように,R_t=0.078 および 0.065 は、ダイアフラムが有る場合には充填高さが異なることによって、最 大水平荷重に大きな差が見られ、充填高さが 1.0D では最大水平荷重が損傷前と比 較して著しく増加した.塑性率については R_t=0.078 の場合は 0.5D で 61%,1.0D で 77%,R_t=0.065 の場合はそれぞれ 45%,87%向上しているが、いずれの供試体も最 大水平荷重到達後に急激な荷重の低下が見られた.R_t=0.049 の場合は、充填高さに よる最大水平荷重の差は小さく、荷重の急激な低下も見られない.特に充填高さ 1.0D については塑性率が 80%以上向上しており,変形性能が大きく向上している. これはダイアフラムより下で損傷が進行したことで,軸力がコンクリートに伝達され,鋼管での軸力分担割合が減少し,座屈の進行が抑えられたためと考えられる. 修復後の剛性については表-5.5 より, R_t =0.078 については損傷前の初期剛性 K_0 に 対して 80%程度であり, R_t =0.065 および 0.049 に比べて剛性の回復量は小さくなっ ている.

(a) $R_t = 0.078$

(b) $R_t = 0.065$

(c) $R_{+} = 0.049$

図-5.4 包絡線(径厚比パラメータの比較)

	р	損傷前	修復後	修復後
供訊体名	K _t	H_{max}/H_y	H _{max} '/H _y	/損傷前
T7.5-CF0.5D-U		1.28	0.98	0.76
T7.5-CF1.0D-U	0.079	1.29	1.28	0.99
T7.5-CF0.5D-S	0.078	1.35	1.37	1.01
T7.5-CF1.0D-S		1.29	1.50	1.16
T8.9-CF0.5D-U		1.36	1.33	0.98
T8.9-CF1.0D-U	0.065	1.36	1.44	1.06
T8.9-CF0.5D-S		1.35	1.46	1.08
T8.9-CF1.0D-S		1.37	1.59	1.17
T11.9-CF0.5D-U		1.37	1.30	0.95
T11.9-CF1.0D-U	0.040	1.38	1.43	1.03
T11.9-CF0.5D-S	0.049	1.35	1.47	1.09
T11.9-CF1.0D-S		1.37	1.53	1.12

表-5.3 最大水平荷重

表-5.4 塑性率

	D	損傷前	修復後	修復後
供訊体名	\mathbf{R}_{t}	μ_{95}	μ_{95} '	/損傷前
T7.5-CF0.5D-U		3.10	3.28	1.06
T7.5-CF1.0D-U	0.079	3.17	4.06	1.28
T7.5-CF0.5D-S	0.078	3.13	5.04	1.61
T7.5-CF1.0D-S		3.12	5.50	1.77
T8.9-CF0.5D-U	0.065	3.64	3.45	0.95
T8.9-CF1.0D-U		3.52	4.94	1.40
T8.9-CF0.5D-S		3.48	5.04	1.45
T8.9-CF1.0D-S		3.45	6.44	1.87
T11.9-CF0.5D-U		4.42	4.28	0.97
T11.9-CF1.0D-U	0.049	4.32	5.76	1.33
T11.9-CF0.5D-S		4.29	6.26	1.46
T11.9-CF1.0D-S		4.50	8.43	1.87

		修復前	修復後
供試体名	R _t	保有剛性	保有剛性
		K_1/K_0	K_2/K_0
T7.5-CF0.5D-U		0.72	0.78
T7.5-CF1.0D-U	0.070	0.73	0.80
T7.5-CF0.5D-S	0.078	0.72	0.81
T7.5-CF1.0D-S		0.74	0.88
T8.9-CF0.5D-U		0.82	0.95
T8.9-CF1.0D-U	0.065	0.82	0.99
T8.9-CF0.5D-S		0.83	0.95
T8.9-CF1.0D-S		0.86	1.00
T11.9-CF0.5D-U		0.75	0.87
T11.9-CF1.0D-U	0.049	0.84	0.89
T11.9-CF0.5D-S		0.79	0.97
T11.9-CF1.0D-S		0.76	0.95

表-5.5 修復前保有剛性および修復後初期剛性

5.4 ひずみ値の分布と損傷状況

ここでは第4章および5章において得られたひずみ値と損傷状況の関係について まとめる.図-5.5~図-5.8 に修復後の載荷実験の各サイクルにおける供試体の損傷 状況および圧縮側のひずみ分布の代表的な例を示す.なお,ひずみ値は新品の供試 体に対する初期載荷実験からの累積値として示してある.したがって,修復後の実 験開始時のひずみ分布を 0δy として表記しているが,これは,1 度目の載荷が終了 した時点のひずみ値と同一である.図の縦軸は供試体基部からの高さ,横軸はひず み値とし,コンクリート充填高さ(S シリーズにおいてはダイアフラム設置高さと一 致)を破線で示す.

図-5.5 に損傷タイプ A の例として, 第4章で行った損傷レベル2, R₁=0.077, 充 填高さ 0.5D, S シリーズ (CL2-CF0.5D-S)の結果を示す. 0δ_y時のひずみ値は, 最も 大きい基部付近において-0.5%程度であり, 座屈損傷は目視で確認できない程度で ある. 3δ_yにおいては基部付近のひずみ値が-1.0%程度, ダイアフラム直上が-0.5% 程度, 4δ_yにおいては基部付近が-1.5%程度, ダイアフラム直上が-1.0%程度となり, 基部付近のひずみ値がやや先行する形で増加している. 第4章の図-4.10(a)の 0.5D-S の包絡線からも分かるように, この時点で最大荷重を迎えており, 5δ_yでは, 基部 付近が-1.5%と変化が無いのに対して, ダイアフラム直上が-3.0%程度となりひずみ の値が逆転している. その後, 6δ_yにおいて基部付近のひずみ値は-1.0%程度に減少 し、ダイアフラム直上のひずみ値のみ増加する結果となった.充填高さ 1.0D の場合についても、0.5D の場合と同様に基部付近のひずみ値の減少が確認できた.

図-5.6 に損傷タイプ B の例として損傷レベル 3, R_i =0.078, 充填高さ 0.5D, S シリ ーズ(T8.9-CF0.5D-S)の結果を示す. この場合, 0 δ_y における基部付近のひずみ値は -2.0%程度であり,最大荷重直後となる 5 δ_y までは基部付近のひずみが大きく増加し, -4.0%程度に達している. しかし, 6 δ_y になると基部付近のひずみ値はほとんど変化 が見られないのに対し,ダイアフラム直上のひずみ値が急激に増加し始め, -1.5% 程度となり,同時に耐力の急激な低下も見られる. その後はダイアフラム直上の座 屈が進行し,最終的にひずみ値が逆転し,崩壊に至っている.

図-5.7 より,損傷レベル 3, R_t =0.049,充填高さ 1.0D, S シリーズ (T11.9-CF1.0D-S) の場合,ひずみ値の増加がみられるのは基部付近のみである.ダイアフラムより上 でのひずみ値の増加は 1%未満であり,座屈変形も確認できなかった.4 δ_y において は基部から 200mm までのひずみ値が-4.0%程度に達し,その後大きく増加した.また,ひずみは基部から 200mm までの高さに集中している.

このタイプ C の特徴として, 図-5.3(f)に示したように,最大荷重到達以降も急激 な耐力の低下が無く,変形性能も向上しており,応急復旧後の余震に対しても十分 耐えうると考えられる.

図-5.8にはダイアフラムを設置しない場合の損傷状況およびひずみ分布の例とし て損傷レベル2, R_t=0.077, 充填高さ1.0D(CL2-CF1.0D-U)の結果を示す.損傷レベ ル2については0δ_y時のひずみ値は-0.5%程度であり,修復後の載荷においては,載 荷開始時のひずみ値の大きさに関係なく,基部付近にひずみが集中している.また, 4章の図-4.10(a)の1.0D-Uの包絡線からも分かるように,最大荷重後の急激な耐力 低下も見られない.なお,コンクリート充填高さおよび径厚比パラメータが異なる 場合においても,同様の傾向が見られた.無充填の供試体と比べひずみの進展は緩 やかになっているが,ひずみの増加位置は変化していない.これは,ダイアフラム が無い場合は,充填コンクリートに対して軸圧縮力がほとんど伝達されないためで あると考えられる.

91

図-5.5 損傷状況およびひずみ分布 損傷タイプ A CL2-CF0.5D-S²⁾

 $(3 \delta_y - 6 \delta_y)$

図-5.7 損傷状況およびひずみ分布 損傷タイプ C T11.9-CF1.0D-S

(4δ_y-7δ_y)

図-5.19 損傷タイプの分類

5.5 修復方法および損傷形態についての評価

既往の研究および前章までの実験結果より,損傷タイプ A および損傷タイプ B のうちコンクリート充填部より上で先行して損傷する場合,耐力の大幅な増加および最大水平荷重到達後の急激な荷重の低下を招く可能性があることが分かっている^{2)~4)}.一度目の載荷により生じた損傷と同じ,基部付近で損傷が進む損傷形態となることで,変形性能の向上が可能である.

図-5.9 に本章および第3章,第4章の実験結果より,修復後の損傷タイプと修復 方法,損傷レベルおよび径厚比パラメータの関係を示す.図中のマーカーに示した 数値はコンクリート充填高さを示し,黒字はダイアフラム無し(-U),白抜き文字は ダイアフラム有り(-S)を示す.

板厚が薄い供試体(R_t=0.08 程度)の場合,損傷レベル2のように基部のひずみ値が 1%未満で,目視で座屈が確認できない程度の損傷に対する修復においてダイアフ ラムを設置する場合は,損傷タイプAとなり,ダイアフラムの直上でひずみ値が急 激に増加する不安定な挙動を示す.基部付近で損傷を進行させるためには,通常の コンクリート充填鋼製橋脚と同様に,十分な充填高さが必要であると考えられるが, 耐力が大幅に増加する可能性がある.4章の図-4.10(a)に示したように,第4章での 実験結果から,損傷レベル2のような軽微な損傷についてはコンクリート充填のみ で十分な耐力の回復が見込まれるため,ダイアフラムを設置しない修復を行うこと で,損傷タイプCとすることが可能となる.

損傷レベル3に対しては、ダイアフラムを設置する場合、径厚比やコンクリート 充填高さによりひずみ分布が異なり、1.0D程度まで充填することで充填部より上で の脆性的な破壊を防ぐことができると思われる.しかし、この場合、損傷レベル2 と同様に耐力の必要以上の増加について注意する必要がある.基部のひずみ値が 2%未満であるならば、ダイアフラムを設置しない方法を用いることが望ましい. 損傷レベル4のようなひずみ値が5%以上に達する大損傷の場合,ダイアフラムの有無および充填高さに関わらず,一度目の載荷で生じた損傷がさらに進行する. そのため,損傷形態よりも十分に耐力を回復させることを優先し,修復方法を選択 すればよい.つまり,コンクリート充填修復を行う場合には,例えばダイアフラム およびジベルを設置するなどの十分に軸力を伝達できる構造を付加することが必 要である.

5.6 まとめ

本章では、円形断面鋼製橋脚の径厚比パラメータ R_t に合わせて適切な修復方法 を提案することを目的として、コンクリート充填修復を行い、修復後の耐震性能を 明らかにした.既存の円形断面鋼製橋脚のうち、設計年次の旧い橋脚は、現行基準 内(0.03 $\leq R_t \leq 0.08$)であっても板厚が比較的薄いものが多く、地震により損傷す る可能性が高い.このことから、 R_t が 0.05~0.08 の標準的な板厚から薄肉の範囲に 着目し、効果的な修復方法を示した.本研究で提案する修復方法は、損傷がコンク リート無充填部で生じた場合および橋脚の残留変形が小さいなど、一定の制約条件 は有るものの、簡便で有効な手法である.以下に本章をまとめる.

- 損傷レベル3のように基部のひずみ値が2%程度までの損傷で,径厚比パラメー タが0.05~0.08程度の橋脚に対しては,径厚比パラメータによらず1.0Dの高さ までコンクリートを充填することで十分に耐震性能の回復が可能である.
- 2. 径厚比パラメータが 0.05 程度で,道路橋示方書に示される範囲のうち中間程度の橋脚の場合,ダイアフラムを設けた場合においても,極端なひずみの集中により最大荷重以降で急激に耐力が低下するような損傷は見られない.ただし,修復作業の簡便さを考慮すると,コンクリート充填のみの修復が望ましい.
- 基部のひずみ値が 5%程度に達している損傷レベル4では、ダイアフラムの有無、 充填高さによらず、一度目の載荷で生じた損傷がさらに進行する.このことか ら、充填高さが 1.0D 程度までの場合耐力を十分に回復させるためにダイアフラ ム(ジベル)を設置するなど、軸力をコンクリートに伝達させる構造を付加する 必要が有る.

参考文献

- 1) (社)日本道路協会:道路橋示方書. 同解説 V耐震設計編, 2012.3.
- 2) 太田 樹, 鈴木森晶, 嶋口儀之:異なる損傷度合の円形断面鋼製橋脚のコンク リート充填修復と耐震性能に関する研究,土木学会論文集 A2(応用力学), Vol.69, No.2(応用力学論文集 Vol.16), I_381-390, 2013.9.
- 3) 尾松大道,鈴木森晶,青木徹彦:損傷した矩形断面鋼製橋脚の補修後の耐震性能に 関する研究,構造工学論文集, Vol.52A, pp.445-453, 2006.3.
- 4) 嶋口儀之, 鈴木森晶, 太田樹, 青木徹彦: 局部座屈が生じた円形断面鋼製橋脚 の修復方法に関する研究, 構造工学論文集, Vol. 58A, pp. 277-289, 2012.3.

第6章 結論

鋼製橋脚は市街地の高架高速道路などの重要度の高い公共構造物に多用されて いる.これらの構造物は地震発生後の緊急輸送道路として位置づけられており,地 震により損傷が生じた場合に,早期の機能回復が求められる.しかしながら,地震 により損傷した鋼製橋脚に対する修復方法および修復後の耐震性能に関する研究 は非常に少なく,修復のための具体的な指針は定められていないのが現状である.

本論文は地震により損傷を受けた円形断面鋼製橋脚を対象として,早期復旧が可能な修復方法を提案することを目的としたものである.

各章で得られた結論を以下にまとめる.

第2章では、地震により損傷した鋼製橋脚に対する修復方法についての基本的な 考え方を述べた.また、鋼製橋脚の損傷度合を橋脚の水平耐力-変位関係を基に損 傷レベルを設定し、地震応答解析の結果を基に、修復後の耐震性能の目標値を提案 した.第2章を以下にまとめる.

- 震災後の緊急輸送路としての機能確保および大規模な余震等への対応のため、 地震後72時間以内に修復作業が完了可能な修復方法とする.
- 局部座屈が生じた鋼製橋脚の損傷度合について評価するために、4 段階の損傷 レベルを設定し、分類することを提案した。
- 地震応答解析の結果を基に、修復後の耐震性能の目標値を、損傷前の最大水平 荷重を±10%以内かつ曲げ剛性を±20%以内とすることを提案し、以降はこの範 囲を基準に修復後の耐震性能の評価を行うこととした。

第3章では,第2章で定めたように,地震後72時間以内に施工が完了し,損傷 前に対して最大水平荷重が±10%かつ曲げ剛性が±20%まで回復可能な簡便な修復 方法を提案することを目的として,3種類の修復方法について,修復後の耐震性能 を明らかにした.この結果,コンクリート充填による修復が簡便かつ効果的な修復 方法であることを示した.第3章で得られた結論を以下にまとめる.

- 局部座屈が生じた円形断面鋼製橋脚に対して、コンクリート充填、鋼板巻き立 ておよび補剛材溶接による3種類の修復を行い、修復後の耐震性能を明らかに した。
- コンクリート充填修復では、1.5D 程度の高さまで充填することで、最大水平荷 重および曲げ剛性がともに大きく回復し、簡便な手法ながら優れた修復効果が 得られることを示した.また、ジベルを設置することで、充填高さが1.0D 程度 でも目標とする耐震性能までに回復させることができることを示した.

- 3. 補剛材修復では、補剛材の本数を8本とした場合(TH50-8)に損傷前の同等の最 大水平荷重まで回復し、変形性能が向上した.補剛材の量を適切に選択するこ とで優れた修復効果が得られることを示したが、実橋脚に適用するためには、 補剛材の本数および形状を対象とする橋脚にあわせて詳細に設計することが必 要である.
- 鋼板巻き立て修復では,鋼板基部を溶接により固定しない場合 (CY0.5D-600)に, 最大水平荷重が±10%まで回復し,変形性能が向上する優れた修復効果が得ら れることを示した.しかし,鋼板巻き立て修復は作業工程が複雑で,72時間以 内に修復作業を完了することは困難である.
- コンクリート充填修復は施工が簡便で、地震後 72 時間以内に修復作業が完了でき、充填高さなどを適切に選択することで、目標とする耐震性能(最大水平荷重±10%、曲げ剛性±20%)まで回復させることが可能である.

第4章では、地震時に発生することが想定される、損傷レベル 2~4 までの異なる 損傷を有する円形断面鋼製橋脚に対して、充填高さおよびダイアフラムの有無を変 えてコンクリート充填修復を行った.修復後の耐震性能および損傷形態を明らかに し、各損傷レベルにおける効果的な修復方法を示した.第4章で得られた結論を以 下にまとめる

- コンクリート充填修復は、橋脚の損傷レベルにより充填高さおよびダイアフラムの有無を適切に選択することで、効果的な修復方法となる.
- 本章で使用した薄肉の断面(R_t=0.077)の橋脚の場合,損傷レベル2では、ダイア フラムを設けず,0.5Dまでコンクリートを充填することで、十分な修復効果(最 大水平荷重±10%および曲げ剛性±20%)が期待できることを示した.
- 3. 損傷レベル3では、ダイアフラムを設けない場合では充填高さを1.0Dとすることで、十分な最大水平荷重の回復および変形性能の向上が可能であることを示した.
- 損傷レベル2および3については、最大水平荷重の大幅な増加および充填部より上での損傷を避けるため、ダイアフラムを設置しない修復方法が望ましい。
- 5. 損傷レベル4についてはダイアフラムを設置するか、3章で示したように1.5D 程度の高さまで充填することで、十分な修復効果が期待できる.

第5章では、円形断面鋼製橋脚の径厚比パラメータ R_t に合わせて適切な修復方法を提案することを目的とする.既存の円形断面鋼製橋脚のうち、設計年次の旧い橋脚は板厚が比較的薄いものが多い.そのため、現行基準内(0.03 $\leq R_t \leq 0.08$)で、 R_t が 0.05~0.08の標準的な板厚から薄肉の範囲に着目し、 R_t ごとに効果的な修

復方法を示した.以下に第5章をまとめる.

- R_tが 0.05~0.08 程度で,損傷レベル 3 の橋脚に対してコンクリート充填修復を 行った場合,R_tの違いによる影響は小さく,1.0Dの高さまでコンクリートを 充填することで十分に耐震性能の回復が可能である.
- R_tが 0.05 程度での橋脚の場合、ダイアフラムを設けた場合においても、最大荷 重以降で急激に耐力が低下するような損傷は見られないが、修復作業の簡便さ を考慮すると、コンクリート充填のみの修復が望ましい。

以上のように、本論文では、地震により損傷した円形断面鋼製橋脚に対する、簡 便な修復方法として、コンクリート充填による修復を提案した.コンクリート充填 修復は、損傷がコンクリート無充填部で生じた場合であることなどの制約条件は有 るものの、コンクリート充填高さおよびダイアフラムなどの軸力を伝達させる部材 の有無を選択することで、異なる損傷度合および径厚比を有する橋脚に対して十分 に耐震性能を回復させることが可能な、有効な手法であることを示した.また、実 際に修復方法を選択する上で重要な橋脚の損傷度合を判定するための、有効な判定 資料となるデータを示した.今後、コンクリートが充填された部位での損傷など異 なる損傷状況に対して修復方法を検討する場合も、本論文で示した基本的な考え方 を基に、対応することが可能である.

謝辞

本研究を遂行するにあたり,愛知工業大学工学部土木工学科 鈴木森晶教授には, 研究室に配属された学部4年生から博士課程の本論文に至るまでの長い期間に渡り, 非常にご多忙の中,終始懇切丁寧な御指導,御鞭撻を賜りました.ここに,厚く御 礼申し上げます.

本論文をまとめるにあたり,愛知工業大学工学部土木工学科 成田国朝教授,愛 知工業大学工学部建築学科 岡田久志教授ならびに山田和夫教授の各先生方には, 貴重な御指導,御意見を賜わりましたことを,厚く御礼申し上げます.

また,中部大学工学部都市建設工学科 水野英二教授,熊本大学大学院自然科学 研究科 葛西昭准教授には,研究を進めるうえで貴重な御意見を賜りました.ここ に深く感謝致します.

本研究の実験を実施する上で、愛知工業大学耐震実験センター 鈴木博技術職員 には、実験の準備や補助などのサポートをして頂きました.ここに深く感謝致します.

本研究は一般社団法人日本鉄鋼連盟の研究助成(鋼構造研究・教育助成事業), 愛知工業大学グローバル人材育成支援事業の研究助成および愛知工業大学耐震実 験センター研究費を使用し実施されました.ここに深く感謝致します.

本研究を進めるにあたり,愛知工業大学工学部土木工学科構造研究室に在学された,大学院生諸氏ならびに学部生諸氏には,多大なご協力を頂きました.ここに深く感謝致します.

本論文は多くの方々の御力添えがあって初めてまとめることができたものであ り,最後にもう一度感謝の意を表し,謝辞と致します.

本論文に関する発表論文・ロ頭発表

論文題目	公表の方法及び時期	著者
 I.学位申請に関わる論文 A) 査読あり 1. 局部座屈が生じた円形断面鋼製 橋脚の修復方法に関する研究 	構造工学論文集, Vol.58A, pp.277-289, 2012.3.	<u>嶋口儀之</u> , 鈴木森晶, 太田樹, 青木徹彦
2. 異なる損傷度合の円形断面鋼製 橋脚のコンクリート充填修復と耐 震性能に関する研究	土木学会論文集 A2(応用力学) Vol.69, No.2(応用力学論文集 Vol.16), I-381-I-390, 2013.8.	太田 樹,鈴木森晶, <u>嶋口儀之</u>
3. 異なる径厚比を有する円形鋼製 橋脚のコンクリート充填修復と耐 震性能に関する実験的研究	土木学会論文集 A2(応用力学), Vol.70, No.2(応用力学論文集 Vol.17), I_565-I_573, 2014.	<u>嶋口儀之</u> , 鈴木森晶
 損傷した円形断面鋼製橋脚にコンクリート充填修復した場合の耐 震性能評価 	構造工学論文集, Vol.61A, pp.292-301, 2015.3.	<u>嶋口儀之</u> , 鈴木森晶
5. Seismic performance evaluation of circular steel bridge piers which have damage and concrete filled repair	IABSE CONFERENCE NARA 2015 Elegance in Structures, NT-9, May 13-15, 2015. (6 頁)	<u>Shimaguchi Y</u> . , Suzuki M.
 Ⅱ.その他 A) 学術論文 a) 査読あり 1. 損傷レベルが異なる矩形断面鋼 製橋脚のコンクリート充填修復と 耐震性能に関する研究 	構造工学論文集 Vol.59A, pp.484-492, 2013.3.	<u>嶋口儀之</u> , 鈴木森晶, 太田樹, 青木徹彦
 b) 査読なし 1. 損傷した円形断面鋼製橋脚の修 理と耐震性能に関する研究 	土木学会第64回年次学術講演会 講演概要集,Ⅰ-596, pp.1191-1192,2009.9.	<u>嶋口儀之</u> , 鈴木森晶, 木村聡, 青木徹彦
2. 既損傷円形断面鋼製橋脚にお ける鋼板巻き立て補修実験	土木学会第65回年次学術講演会 講演概要集,Ⅰ-70,pp.139-140, 2010.9.	<u>嶋口儀之</u> , 鈴木森晶, 則竹一輝, 青木徹彦
3. 既損傷円形断面鋼製橋脚にお けるコンクリート充填補修実験	土木学会第65回年次学術講演会 講演概要集,Ⅰ-71,pp.139-140, 2010.9.	則竹一輝, 鈴木森晶, <u>嶋口儀之</u> , 青木徹彦

	論文題目	公表の方法及び時期	著者
4.	損傷した円形鋼製橋脚に対する コンクリート充填補修の充填高さ と耐震性能に関する研究	土木学会第66回年次学術講演会 講演概要集, I-191, pp.379-381, 2011.9.	太田樹, 鈴木森晶, <u>嶋口儀之</u> , 青木徹彦
5.	損傷した円形鋼製橋脚に対す る補修方法と耐震性能に関する 考察	土木学会第66回年次学術講演会 講演概要集, I-192, pp.381-382, 2011.9.	<u>嶋口儀之</u> , 鈴木森晶, 太田樹, 則竹一輝, 青木徹彦
6.	損傷した矩形鋼製橋脚のコンク リート充填修復における損傷レ ベルの違いによる比較	土木学会第67回年次学術講演会 講演概要集, I - 34, pp.67-68, 2012.9.	<u>嶋口儀之</u> , 鈴木森晶, 太田樹
7.	損傷した矩形鋼製橋脚のコンク リート充填修復における充填高 さの違いによる比較	土木学会第67回年次学術講演会 講演概要集, I - 35, pp.69-70, 2012.9	太田樹, 鈴木森晶, <u>嶋口儀之</u> , 青木徹彦
8.	異なる損傷度合の円形断面鋼 製橋脚に対するコンクリート充 填修復に関する研究	土木学会第68回年次学術講演会 講演概要集, I-67, pp.133-134, 2013.9.	<u>嶋口儀之</u> , 鈴木森晶, 太田樹, 青木徹彦
9.	損傷した円形鋼製橋脚のコンク リート充填修復後の耐震性能評 価	土木学会第69回年次学術講演会 講演概要集, I-284, pp.567-568, 2014.9.	<u>嶋口儀之</u> , 鈴木森晶, 中村訓大
10.	異なる構造パラメータを有する 円形断面鋼製橋脚の修復方法 の評価	土木学会第69回年次学術講演会 講演概要集, I-298, pp.595-596, 2014.9.	中村訓大,鈴木森晶, <u>嶋口儀之</u>
11.	震災後の初動点検における鋼 製橋脚の被災度判定に係る基 礎データ収集のための実験的 研究	平成26年度土木学会中部支部研 究発表会講演概要集, I-13, pp.25-26,2015.3.	<u>嶋口儀之</u> , 鈴木森晶, 中村訓大
12.	耐震補強された鋼製橋脚の地 震後の被災度判定に係る基礎 データ収集のための実験的研 究	土木学会第 18 回応用力学シンポ ジウム講演概要集, pp.217-218, 2015.5.	<u>嶋口儀之</u> , 鈴木森晶, 澤田敏幸, 田端宜昌