論文 コンクリートの支圧特性に及ぼす横拘束形式の影響に関する研究

小野 晃*1・関 俊力*2・瀬古 繁喜*3・山田 和夫*4

要旨:本研究では、コンファインドコンクリートの1軸支圧特性に及ぼす横拘束形式(全面横拘束(鋼管)と 離散的横拘束(帯筋))の影響について実験的検討を行った。その結果、圧縮耐力は、支圧径に関わらず鋼管 および帯筋によるコンファインド効果により横補強量が大きくなるとともにほぼ直線的に増大すること、六 車・岡本式による支圧強度に関する推定結果は、鋼管モルタルおよび帯筋モルタルの何れの場合も過小評価 となること、横拘束形式の異なるコンファインドコンクリートの支圧強度に及ぼす横補強量の影響は、横拘 束形式毎に提案した支圧強度推定式を用いることによって評価できること、などが明らかとなった。 キーワード:コンファインドコンクリート、鋼管、帯筋、圧縮耐力、支圧強度、変形特性

1. はじめに

2001年に改訂された「建築基礎構造設計指針」におい て, 杭頭の回転剛性を考慮した設計が認知され, 近年, 各種の杭頭半剛接構法の適用事例が増加している1)。こ の点を踏まえて、筆者らも従来から鋼管形式による杭頭 半剛接構法に関する一連の基礎的研究2)~5)を行ってお り、前報6)では、無補強および低横補強の杭頭部コンク リートの支圧強度は、六車・岡本式7)でおおよそ評価で きるが,横補強量がそれ以上になると,推定支圧強度は, 横補強量が大きくなるほど過小評価となる傾向にあるこ とが明らかとなったため、コンファインドコンクリート の支圧強度に及ぼす横補強量および母材強度の影響を考 慮に入れた支圧強度推定式の提案を行った。本研究では, 引き続きコンクリートの1軸支圧特性に及ぼす横拘束形 式(全面横拘束(鋼管)と離散的横拘束(帯筋))の影響の 検討を目的として,鋼管と横補強量が同程度となるよう に帯筋を配筋した試験体を用いて実験的検討を行った。 なお、本実験では、前報6の実験と同様に、コンファイ ンドコンクリートの1軸支圧特性に及ぼす幾何学的非均 質性(D/d:試験体寸法と粗骨材寸法との比)の影響を 取り除くために,粗骨材を含まないモルタルを使用した。

*1 愛知工業大学大学院 工学研究科建設システム工学専攻 (正会員)

*2 愛知工業大学大学院 工学研究科生産・建設工学専攻 修士(工学) (正会員)

*3 愛知工業大学 工学部建築学科講師 博士(工学) (正会員)

*4 愛知工業大学 工学部建築学科教授 工博 (正会員)

従って、本研究結果をコンクリートに適用する際には、 ヤング係数の相違、ひび割れ面での粗骨材によるクラッ ク・アレスト効果の影響などに留意する必要がある。

- 2. 実験方法
- 2.1 試験体

本試験では,表-1および図-1に示すように,何れ の試験体も水セメント比(W/C)が65%で,外形(D)×高 さ(H)がφ150×300mmの円柱体を使用し,実験要因とし

		試験体外寸法		加力	鋼管(帯筋)詳細		羊細
試験体記号	W/C (%)	直 径 D(mm)	高 さ H(mm)	支圧径 B(mm)	肉厚T (直径φ) (mm)	配筋 間隔 S(mm)	横補 強比 Pw(%)
BS10-65-145	65	φ150	300	φ145	1.0	—	1.33
BS10-65-100	65	φ150	300	φ100	1.0	—	1.33
BS10-65-75	65	φ150	300	φ75	1.0	_	1.33
BS10-65- 50	65	φ150	300	φ50	1.0	_	1.33
BS16-65-145	65	φ150	300	φ145	1.6	-	2.13
BS16-65-100	65	φ150	300	φ100	1.6	-	2.13
BS16-65-75	65	φ150	300	φ75	1.6		2.13
BS16-65- 50	65	φ150	300	φ50	1.6		2.13
BS23-65-145	65	φ150	300	φ145	2.3	-	3.07
BS23-65-100	65	φ150	300	φ100	2.3		3.07
BS23-65- 75	65	φ150	300	φ75	2.3		3.07
BS23-65- 50	65	φ150	300	φ50	2.3		3.07
BH60-65-145	65	φ150	300	φ145	(9.0)	60.0	1.41
BH60-65-100	65	φ150	300	φ100	(9.0)	60.0	1.41
BH60-65-75	65	φ150	300	φ75	(9.0)	60.0	1.41
BH60-65- 50	65	φ150	300	φ50	(9.0)	60.0	1.41
BH37-65-145	65	φ150	300	φ145	(9.0)	37.5	2.26
BH37-65-100	65	φ150	300	φ100	(9.0)	37.5	2.26
BH37-65-75	65	φ150	300	φ75	(9.0)	37.5	2.26
BH37-65- 50	65	φ150	300	φ50	(9.0)	37.5	2.26
BH27-65-145	65	φ150	300	φ145	(9.0)	27.3	3.11
BH27-65-100	65	φ150	300	φ100	(9.0)	27.3	3.11
BH27-65-75	65	φ150	300	φ75	(9.0)	27.3	3.11
BH27-65-50	65	φ150	300	φ50	(9.0)	27.3	3.11
BC-65-145	65	φ150	300	φ145	—		0.00
BC-65-100	65	φ150	300	φ100	—	Manue	0.00
BC-65- 75	65	φ150	300	φ75	—		0.00
BC-65-50	65	φ150	300	φ50	-		0.00

表-1 実験の概要

W/C (%) S/C 単位量(kg/m ³) 目標 (rg/m ³) 目標 (rg/m ³) 目標 (rg/m ³) 65 3.00 472 307 1,415 200±10 表-3 材料試験結果 (a) モルタル 200±10 表-3 初料試験結果 (a) モルタル 試験 材齢 養生 方法 密度 (g/cm ³) 強度試験結果 (MPa) アング 係数 (MPa) アング 係数 (GPa) 28日 水中 2.24 2.06 38.0 - 49日 封織 2.20 2.53 37.3 21.6 55日 封織 2.20 2.83 40.1 21.2 [注]材齢493よび55日は、それぞれ支ま支験の 直前および直後の結果。 (b) 鉄 筋 (MPa) (MPa) (MPa) $\psi^{\nu \vee$ (GPa) (GPa) (%) 種類 呼び名 降伏点 (MPa) 引張強さ (MPa) (MPa) (GPa) (%) (%) (%) (%) (%) 電 原 (MPa) 「 (MPa) (MPa) (GPa) (%) (%) (%) 1.0 250 321 204 36. 294 µ	表-2 標準調合表								
(%) S/C セメント C 水 W 細骨材 S フロー値 65 3.00 472 307 1,415 200±10 表-3 材料試験結果 (a) モルタル 200±10 試験 材齢 養生 方法 密度 (g/cm ³) 強度試験結果 (MPa) ヤング 係 数 (MPa) 28日 水中 2.24 2.06 38.0 - 49日 封織 2.20 2.53 37.3 21.6 55日 封織 2.20 2.83 40.1 21.2 [注] 材齢49および55日は、それぞれたれ支圧実験の 直前および直後の結果。 (MPa) (MPa) (MPa) 「明強な (MPa) 「川田島 (%) 董筋 ϕ 9 341 453 210 35.1 (mm) (MPa) 「供依点 (MPa) 「他び率 (%) 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6	W/C	8/0	単位量 (kg/m ³)			目標			
65 3.00 472 307 1,415 200±10 表-3 材料試験結果 (a) モルタル $(a) = \mu g \mu$ $(a) = \mu g \mu$ $(a) = \mu g \mu$ 試験 材齢 養生 方法 密度 (g/cm ³) 強度試験結果 引張 $\gamma \nu \sigma'$ 係数 (MPa) 28日 水中 2.24 2.06 38.0 - 49日 封織 2.20 2.53 37.3 21.6 55日 封織 2.20 2.83 40.1 21.2 [注] 材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (b) 鉄 筋 (GPa) (GPa) (%) 種類 呼び名 降伏点 (MPa) 引張強さ (MPa) $\gamma \nu \sigma'$ (GPa) (g/ϕ) $\psi \sigma^{\pi} \phi$ 素筋 ϕ 9 341 453 210 35.1 (mm) (MPa) (MPa) (g/ϕ $g/\phi \phi$ $g/\phi \phi$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ </td <td>(%)</td> <td>5/C</td> <td>セメントC</td> <td>水W</td> <td>細骨材 S</td> <td>フロー値</td>	(%)	5/C	セメントC	水W	細骨材 S	フロー値			
表一3 材料試験結果 (a) モルタル試験 材 齢養生 方法密度 (g/cm ³)強度試験結果 引 張 (MPa)ヤング 係数 (MPa)28日 49日水中2.242.0638.0 $-$ 49日 49日封緘2.202.5337.321.655日 55日封緘2.202.8340.121.2[注]材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (MPa) $+ \nu J$ (係数 (GPa)種類 m呼び名降伏点 (MPa)引張強さ (MPa) $+ \nu J$ (GPa)伸び率 (%)種類 (mm)(MPa)145321035.1(c) 鋼 (MPa) $e V J$ (GPa) $e K h$ (%) $0 J$ $0 J$ $0 J$ ϕJ $0 J$ 内厚 (MPa)降伏点 (MPa)引張強さ (GPa) $e K h$ $0 J$ $\mu J \Phi$ $0 J$ 1.025032120436.7239 μ 1.628635420238.6294 μ 2.327735819737.5104 μ	65	3.00	472	307	1,415	200±10			
(a) モルタル試験 材 齢養生 方法密度 (g/cm ³)強度試験結果 引 張 (MPa)ヤング 係数 (MPa)28日水中2.242.0638.0 $-$ 49日封緘2.202.5337.321.655日封緘2.202.8340.121.2[注]材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (MPa) (GPa) $\phi 0$ $\phi 0$ 種類呼び名降伏点 (MPa)引張強さ (MPa) $\psi \gamma J$ (GPa) $\phi 0$ 葡萄 $\phi 9$ 34145321035.1(c))管 $\phi \gamma \Delta g$ $\phi \sigma \Delta g$ 周馬強さ (MPa)(MPa) $\psi \gamma J$ (GPa) $\phi \sigma \Delta g$ $\phi \sigma \Delta g$ 1.025032120436.7239 μ 1.628635420238.6294 μ 2.327735819737.5104 μ									
試験 材齢養生 方法密度 (g/cm ³)強度試験結果 引 張 月 張 (MPa) $\tau \nu J$ 係数 (GPa)28日水中2.242.0638.0 $-$ 49日封緘2.202.5337.321.655日封緘2.202.8340.121.2[注]甘齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (MPa)66 $\psi \nu J$ (MPa)種類呼び名降伏点 (MPa)引張強さ (MPa) $\psi \nu J$ (GPa) $\phi \eta$ (%)種類呼び名降伏点 (MPa)引張強さ (MPa) $\psi \nu J$ (GPa)内厚 (mm)降伏点 (MPa)引張強さ (MPa) $\psi \nu J$ (%) $\psi \sigma \phi \phi$ (%)1.025032120436.7239 μ 1.628635420238.6294 μ 2.327735819737.5104 μ			<u>(a)モ</u>	ルタル					
材 齢 方 法 (g/cm ³) 引 張 圧 縮 係 数 28日 水中 2.24 2.06 38.0 - 49日 封緘 2.20 2.53 37.3 21.6 55日 封緘 2.20 2.83 40.1 21.2 [注] 材飾49および55日は、それぞれ支圧実験の 直前および直後の結果。 (b) 鉄 筋 種 類 呼び名 降伏点 (MPa) 引張強さ (MPa) ヤング (GPa) 伸び率 (%) 葡 筋 ϕ 9 341 453 210 35.1 (c) 鋼 管 作び率 (%) 解 放 (GPa) 解 放 $\upsilon = \phi \phi \phi$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	試 驗	養 生	密度	強度試	験結果	ヤング			
福田 四日 (Q Ch1) (MPa) (MPa) (GPa) 28日 水中 2.24 2.06 38.0 - 49日 封緘 2.20 2.53 37.3 21.6 55日 封緘 2.20 2.83 40.1 21.2 [注] 討輸。49志よび55日は、それぞれ支圧実験の 直前および直後の結果。 それぞれ支圧実験の (b) 鉄筋 (MPa) (MPa) (ϕ°) 種類 呼び名 降伏点 (MPa) 引張強さ (MPa) $\gamma \vee J$ (GPa) 伸び率 (γ°) 葡萄 ϕ 9 341 453 210 35.1 (c) 留 管 (MPa) (MPa) $\phi^{\pi} \chi_{g}$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	材齢	方法	(g/cm^3)	引張	圧 縮	係数			
28日 水中 2.24 2.06 38.0 $-$ 49日 封緘 2.20 2.53 37.3 21.6 55日 封緘 2.20 2.83 40.1 21.2 [注]材齢49ぶよび55日は、それぞれ支圧実験の 直前および直後の結果。 (b)鉄 筋 6 種類 呼び名 降伏点 (MPa) 引張強さ (MPa) $\gamma \vee j$ (GPa) 伸び率 (%) 葡萄 ϕ 9 341 453 210 35.1 (c)30 管 (MPa) (MPa) $\psi \vee j$ (%) $\psi = \psi z_A g$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ			(g/cm)	(MPa)	(MPa)	(GPa)			
49日 封緘 2.20 2.53 37.3 21.6 55日 封緘 2.20 2.83 40.1 21.2 [注]材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 それぞれ支圧実験の (b)鉄 筋 第 ϕ 9 341 453 210 35.1 種類 呼び名 降伏点 (MPa) 引張強さ (MPa) $\gamma \vee J$ (GPa) 伸び率 (%) ϕ ϕ 帯筋 ϕ 341 453 210 35.1 (c) 鋼 管 (MPa) (MPa) $\psi \nabla \phi$ (%) $\psi \sigma \phi \phi$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	28日	水中	2.24	2.06	38.0	_			
55日封緘2.202.8340.121.2[注]材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (b)鉄筋21.2種類呼び名降伏点 (MPa)引張強さ (MPa) $\frac{\gamma \vee j}{(K & &)}{(GPa)}$ 伸び率 (%)葡筋 ϕ 934145321035.1(c)鋼管 </td <td>49日</td> <td>封緘</td> <td>2.20</td> <td>2.53</td> <td>37.3</td> <td>21.6</td>	49日	封緘	2.20	2.53	37.3	21.6			
[注]材齢49および55日は、それぞれ支圧実験の 直前および直後の結果。 (b)鉄筋 種類 呼び名 降伏点 引張強さ (MPa) (MPa) (MPa) (ϕ) 電筋 ϕ 9 341 453 210 35.1 (c)鋼 管 肉厚 降伏点 引張強さ (γ 2) ϕ (MPa) (MPa) (ϕ) ϕ (ϕ) ϕ 第 筋 ϕ 9 341 453 210 35.1 (c)鋼 管 [ϕ (ϕ) ϕ (ϕ	55日	55日 封緘		2.83	40.1	21.2			
直前および直後の結果。 (b)鉄 筋 種類 呼び名 降伏点 引張強さ (MPa) (MPa) (GPa) (ϕ) 帯筋 ϕ 9 341 453 210 35.1 (c)鋼 管 肉厚 降伏点 引張強さ (ϕ) (MPa) (MPa) (ϕ) ϕ (ϕ) ϕ 第 筋 ϕ 9 341 453 210 35.1 (c)鋼 管 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	[注]相	才齢49およ	こび55日は	、それぞ	れ支圧実	験の			
(b)鉄筋種類呼び名降伏点 (MPa)引張強さ (MPa) $\gamma \vee j'$ 係数 (GPa)伸び率 (%)帯筋 $\phi 9$ 34145321035.1(c)鋼管肉厚降伏点 (MPa)引張強さ (MPa) $\gamma \vee j'$ 係数 (GPa)伸び率 (%)解 放 $\upsilon \neq \lambda g$ 1.025032120436.7239 μ 1.628635420238.6294 μ 2.327735819737.5104 μ	Ī	直前およて	び直後の新	吉果。					
種類 呼び名 降伏点 (MPa) 引張強さ (MPa) $\frac{\gamma \vee J}{(K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			(b)釒	失 筋					
種類 呼び名 所取知之 (MPa) 係数 (MPa) 所取知之 (MPa) 係数 (GPa) 所の中 (%) 帯筋 ϕ 9 341 453 210 35.1 (c)鋼 管 (mm) (MPa) 引張強さ (MPa) ヤング 係数 (GPa) 解 放 ひずみ度 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ			隆仕占	引張論さ	ヤング	伯7%家			
南厚 降伏点 引張強さ (MPa) ヤング 係数 (GPa) 伸び率 (%) 解 放 ひずみ度 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	種類	呼び名	(MPa)	(MPa)	係数	(%)			
帯筋 ϕ 934145321035.1(c)鋼管肉厚降伏点引張強さ (MPa) $\gamma \vee /$ 係数 (GPa)伸び率 (%)解放 $\upsilon " 7 \rightarrow g$ 1.025032120436.7239 μ 1.628635420238.6294 μ 2.327735819737.5104 μ			(141 4)	(111 4)	(GPa)	(70)			
(c)鋼 管 肉厚 降伏点 引張強さ (MPa) $\gamma \vee J$ 係数 (GPa) 伸び率 (%) 解放 $\upsilon = \gamma \phi g$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	帯筋	φ9	341	453	210	35.1			
肉厚 (mm) 降伏点 (MPa) 引張強さ (MPa) ヤング 係数 (GPa) 伸び率 (%) 解放 ひずみ度 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	(c)鋼 管								
(mm) (MPa) (MPa) (MPa) (\Re χ) ($\%$ χ) ($\%$ $\%$) $\%$ $\%$ $\%$ 1.0 250 321 204 36.7 239 μ 1.6 286 354 202 38.6 294 μ 2.3 277 358 197 37.5 104 μ	肉 厚	隆伏点	引張強さ	ヤング	伸び率	解於			
$\begin{array}{c ccccc} \hline (1129) & (1129) & (GPa) & (OY) & P + 02 \\ \hline 1.0 & 250 & 321 & 204 & 36.7 & 239\mu \\ \hline 1.6 & 286 & 354 & 202 & 38.6 & 294\mu \\ \hline 2.3 & 277 & 358 & 197 & 37.5 & 104\mu \\ \hline \end{array}$	(mm)	(MPa)	(MPa)	係数	(%)	ひずみ度			
		((1.12 4)	(GPa)	(, -)	- / /			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0	250	321	204	36.7	239 µ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.6	286	354	202	38.6	294 µ			
	2.3	277	358	197	37.5	104μ			

ては、支圧径 (B=50,75,100および145mmの4種類(図 - 1の平面図中の◎部))、横拘束形式(鋼管および帯筋の2種類)および横補強比(本論文では、断面積比で表される横補強筋比と横補強鋼材比を指す共通の用語として便宜的に用いる)を取り上げ、横補強比(Pw)は、 表-1に示す横補強無し(Pw=0.00%)のプレーンモルタル、鋼管の場合がPw=1.33,2.13および3.07%の3種類(公称肉厚(T):1.0,1.6および2.3mm),帯筋の場合がPw= 1.41,2.26および3.11%の3種類(帯筋間隔(S):60.0,37.5 および27.3mm)の合計7種類とした。なお、本論文では、 鋼管によって横補強されたコンファインドモルタルを鋼 管モルタル、帯筋によって横補強されたコンファインド モルタルを帯筋モルタルと便宜上呼ぶことにする。

2.2 試験体の作製および養生方法

試験体の作製に際しては、目標フロー値を200±10に設 定し、普通ポルトランドセメント、天竜川産の川砂(最 大寸法:2.5mm、表乾密度:2.60g/cm³)を使用して試し 練りにより調合を決定した。本実験で用いたモルタルの 標準調合表を表-2に示す。試験体の打設は、何れの試 験体も鋼管および帯筋を φ 150×300mmの鋼製型枠内の 所定位置に固定した後に2層に分けて行い、棒状バイブ レータを使用して締固めを十分に行った。なお、鋼管の 内面には、打設前にグリースを薄く塗布して鋼管とモル タルとの界面の摩擦が極力小さくなるように設定した。

試験体は、材齢1週で脱型・研磨を行い、その後、実 験実施まで実験室内でシート養生を行った。実験時の材 齢は50~51日であった。なお、使用モルタルの力学的性 質を調べるためにモルタル打設時にφ100×200mmの円

柱供試体を同時に作製し,材齢28日(標準水中養生), 実験の直前および直後(封緘養生)の時点で圧縮および 割裂引張強度試験を行った。本実験で用いたモルタル, 帯筋および鋼管に関する材料試験結果を表-3に示す。 なお,表中の解放ひずみ度は,長さ50mmに切断した鋼 管の側面中央部に1対のひずみゲージ(ゲージ長5mm) を円周方向に貼付した後に鋼管を材軸方向に切断して測 定した結果で,肉厚T=1.0, 1.6および2.3mmの鋼管の元 応力は,それぞれ48.8, 59.4および20.5MPaであった。 2.3 加力および測定方法

加力要領を図-2に示す。本実験では、杭頭モデル試 験体の1軸圧縮加力に際して容量2,000kNの耐圧試験機を 使用し、試験体の打設上面(研磨面)を下側にして試験 機に設置した後、毎分約1.0mmの載荷スピードで単調漸 増1軸圧縮載荷を行って荷重-軸変位関係、モルタルお よび鋼管中央側面部(前掲の図-1参照)の荷重-縦・ 横ひずみ度関係の測定,並びに破壊状況の観察を行った。 なお、1軸圧縮載荷中の試験体の軸変位(載荷板間変位(図 -2参照))の計測には、ストローク50mmの高感度ひず みゲージ式変位計を使用し、試験体側面の縦ひずみ度お よび横ひずみ度の測定には、ゲージ長5mm(鋼管用)お よび30mm(モルタル用)のひずみゲージを使用した。

実験結果とその考察

3.1 破壊状況

写真-1および2に、プレーンおよび鋼管モルタルの 最終破壊状況の例を示す。これらの写真によれば、鋼管 の有無に関わらず全面加力の場合は、せん断滑りによっ

写真-1 プレーンモルタルの最終破壊状況(Pw=0.00%) (左から支圧径(B)=145,100,75および50mm)

写真-2 鋼管モルタルの最終破壊状況の例(Pw=1.33%) (左から支圧径(B)=145,100,75および50mm)

宝 险 红 甲 二 監

(a)Pw=1.33%
 (b)Pw=2.13%
 (c)Pw=3.07%
 写真-3 鋼管モルタルの最終割裂ひび割れ状況の例
 (支圧径(B)=50mmの場合)

(a)BH60シリーズ(Pw=1.41%) 写真-4 帯筋モルタルの最終破壊状況の例(左から支圧径(B)=145, 100, 75および50mm)

	12	<u>(</u> –	大雨大小ロフ	지 못			
試驗体記号	Pc	δс	1 ع	E <i>S</i>	Pcc	Pcc/Pc	
		(mm)	(μ)	(µ)	(kN)	100/10	
BS10-65-145	748.2	1.62	-1229	1153	748.2	1.00	
BS10-65-100	630.6	1.54	-714	647	493.2	0.78	
BS10-65-75	451.1	1.18	-370	290	357.1	0.79	
BS10-65- 50	290.3	1.45	-238	255	226.6	0.78	
BS16-65-145	906.1	2.06	-697	1041	906.1	1.00	
BS16-65-100	729.6	1.52	-769	437	597.2	0.82	
BS16-65-75	559.0	2.09	-621	382	432.5	0.77	
BS16-65-50	363.8	2.61	-218	216	274.4	0.75	
BS23-65-145	981.6	6.39	-7996	11390	981.6	1.00	
BS23-65-100	857.1	2.91	-1275	1199	647.0	0.75	
BS23-65-75	676.7	3.84	-894	789	468.5	0.69	
BS23-65- 50	454.0	8.40	-343	709	297.3	0.65	
BH60-65-145	624.7	2.85	-146 *	61 *	624.7	1.00	
BH60-65-100	614.9	2.97	-203	4657	411.7	0.67	
BH60-65-75	432.5	1.74	-189 *	3787 *	298.1	0.69	
BH60-65-50	270.7	2.07	-222 *	274 *	189.2	0.70	
BH37-65-145	838.5	5.52	-1418 *	5899 *	838.5	1.00	
BH37-65-100	739.4	3.89	-1238	3554	552.6	0.75	
BH37-65-75	552.1	4.15	-243	5523	400.2	0.72	
BH37-65-50	318.7	2.26	-439 *	97 *	253.9	0.80	
BH27-65-145	935.6	4.75	-737	2741	935.6	1.00	
BH27-65-100	845.3	5.95	-508	2916	616.6	0.73	
BH27-65-75	668.8	3.98	-2139	1153	446.5	0.67	
BH27-65-50	446.2	6.13	-1629	412	283.3	0.63	
BC-65-145	649.2	1.16	-2900	693	649.2	1.00	
BC-65-100	394.2	0.71	-1195	3094	427.9	1.09	
BC-65-75	294.2	0.63	-996	1536	309.8	1.05	
BC-65-50	174.6	0.45	-514	96	196.6	1.13	

[注] Pc: 圧縮耐力, δc: 圧縮耐力時の軸変位,
 εl・εs: 圧縮耐力時の試験体表面の縦・横ひずみ度,
 Pcc: 六車・岡本式による計算結果,
 *: 圧縮耐力前にゲージ破断(最大ひずみ度)。

て破壊したが、支圧加力の場合は、数本の割裂ひび割れ によって破壊し、かつ割裂ひび割れの幅は、写真-3に 示すように、横補強比(Pw)が大きくなる従って狭く なる傾向を示している。一方、帯筋モルタルの最終破壊 状況の例を示した写真-4によれば、試験体は、帯筋間 隔および支圧径に関わらず(全面加力を含む)、帯筋と

(b)BH27シリーズ(Pw=3.11%) **左から支圧径**(B)=145,100,75および50mm) 帯筋との間で斜めせん断滑り面が形成されることによっ て破壊し,鋼管モルタルで観察されたような割裂ひび割 れの発生は明確には認められなかった。また,支圧径が 大きい場合(B=100および145mm)には,試験体中央部 近傍にせん断滑り面が形成されているが,支圧径が小さ

くなる(B=50および75mm)と、破壊領域が試験体上部の支圧部近傍に集中する傾向にあることがわかる。

3.2 圧縮耐力

表-4に本実験によって得られた各種試験体の圧縮耐 力 (Pc), 圧縮耐力時の載荷板間軸変位 (δc) モルタル および鋼管側面中央部の縦ひずみ度(ε)・横ひずみ度 (Es) の一覧, 並びに図-3に圧縮耐力と横補強量(Pw $\cdot \sigma_y$, ここに, σ_y : 鋼管および帯筋の降伏点) との関係 を支圧径別に示す。これらの表および図によれば,圧縮 耐力は、支圧径に関わらず鋼管と帯筋のコンファインド 効果により横補強量の増大とともに直線的に増大する傾 向を示している。また,横拘束効果の異なる鋼管と帯筋 のコンファインド効果を比較してみると、同一横補強量 時の圧縮耐力は、支圧径に関わらず帯筋モルタルよりも 鋼管モルタルの方が大きくなっているのがわかる。これ は,帯筋のような離散的な横拘束を受ける場合の耐力が, 帯筋位置よりもコンファインド効果が相対的に小さくな っている帯筋と帯筋との間でせん断滑り破壊することに よって決まるためと思われる。

前掲の表-4中には、次の式(1)で表される六車・岡本が提案したコンクリートの支圧強度推定式のによる支 圧耐力の計算値(*Pcc=FB×Al*)および支圧強度推定式の 推定精度(計算値/実験値(*Pcc/Pc*))も併示してある。

$$FB = F \cdot (A/Al)^{0.439} \tag{1}$$

ここに, FB: 支圧強度 (N/mm²), F: 全面圧縮強度

(N/mm²), *A*:支承面積(mm²), *A*:支圧面積(mm²)。 **表**-4によれば、プレーンモルタル(横補強比(*Pw*)= 0.00%)を除くと、鋼管モルタルおよび帯筋モルタルの 支圧耐力は何れも推定値よりも大きく、支圧耐力の推定 値は過小評価となっているのがわかる。図-4(a)およ び(b)は、それぞれ前掲の図-3に示した鋼管モルタル および帯筋モルタルの支圧耐力(=圧縮耐力(*Pc*))を支 圧面積(*A*))で除して得られる支圧強度と支圧径との関 係に及ぼす横補強比(*Pw*)の影響を示したものである。 なお、図中には前報⁵)で提案した以下の式で表される支 圧強度推定結果(赤色の破線)も併示してある。

$F_B = F \cdot (A/Al)^C$		(2)
$F=1.39\sigma_{c}+3.71Pw\cdot\sigma_{y}-20.5$	Ĵ	(2)
C= $-0.0044\sigma_{c}+0.020Pw\cdot\sigma_{y}-0.617$	ſ	(3)

図によれば、鋼管モルタルの場合(図-4(a)参照) には、推定値は横補強比(Pw)の小さいPw=1.33%の場 合が若干過小評価で、帯筋モルタルの場合(図-4(b) 参照)には、プレーンモルタル(Pw=0.00%)を除くと何 れも過大評価となっている。これは、前報⁵⁾で提案した 支圧強度推定式では、Pwの大きい全面横拘束の鋼管(Pw=2.21%)と小さい離散的横拘束の帯筋($Pw \leq 1.30\%$)によ るコンファインド効果を区別せずに一括して横補強量 ($Pw \cdot \sigma_y$)の影響として処理したためである。この点を

表-5 支圧強度推定式中の係数算定結果一覧

横拘束 形式	実験 シリーズ	母材強度 σc (MPa)	横補強比 <i>Pw</i> (%)	横補強量 Pw・σy (MPa)	全面圧縮 強度 F (MPa)	係数 C
	BS10	38.7	1.33	3.32	48.7	0.544
鋼管	BS16	38.7	2.13	6.11	57.7	0.568
	BS23	38.7	3.07	8.49	63.4	0.633
帯 筋	BH60	38.7	1.41	4.72	42.9	0.589
	BH37	38.7	2.26	7.57	56.4	0.539
	BH27	38.7	3.11	10.41	61.1	0.646
無し	BC65	38.7	0.00	0.00	38.8	0.391

踏まえて、以下では鋼管と帯筋によるコンファインド効 果の相違を考慮した支圧強度推定式の定量化を試みる。

表-5は、本実験によって得られた鋼管モルタルおよ び帯筋モルタルの支圧強度(FB)と支圧面積比(A/AI) との関係を前掲の式(2)で評価して算定した全面圧強度 (F)および係数(C)を一覧表にして示したものであ る。また、図-5(a)および(b)は、それぞれ鋼管モル タルおよび帯筋モルタルの支圧強度(FB)と支圧面積 比(A/AI)との関係に関する実験結果と推定結果との比 較を横補強比(Pw)別に示したものである。図によれ ば、実験結果と推定結果は非常に良く一致しており、同 一のPw(=横補強量(Pw·σy))毎にF値とC値を設定する ことによって、かなりの精度で支圧強度の推定が可能で あるといえる。次に、鋼管モルタルおよび帯筋モルタル の支圧強度を決定するF値とC値の定式化について検討 する。紙数の関係で図には示していないが、式(2)中のF 値およびC値は、何れも母材モルタルの圧縮強度(σc)

および横補強量 ($P_W \cdot \sigma_y$) の1次関数として表示でき, かつ同一の横補強量時のF値およびC値は、帯筋モルタ ルと比較して鋼管モルタルの方が大きくなることがわか ったため、本研究では、鋼管モルタルと帯筋モルタルの それぞれに対して重回帰分析を行った。本実験の範囲で は、F値とC値に関する評価式として次式が得られた。 ①鋼管モルタルの場合:

$$F = 1.39\sigma_{c} + 2.94P_{W} \cdot \sigma_{y} - 14.8$$

$$C = -0.0044\sigma_{c} + 0.027 P_{W} \cdot \sigma_{y} + 0.584$$

$$(4)$$

②帯筋モルタルの場合:

$$F = 1.39\sigma_c + 2.30P_w \cdot \sigma_y - 17.0$$

なお、本実験では、水セメント比(W/C)を65%の一

定としており、F値およびC値に及ぼす母材モルタルの 圧縮強度 (σ_c) の影響が考慮できないため、上式中の σ_c 項は、前報5)で示した解析結果(式(3)参照)を用いた。

図-6(a)および(b)は、式(2)中のF値およびC値を それぞれ式(4)および式(5)で評価した場合の実験結果と 推定結果とを比較したものである。図によれば、支圧強 度の推定誤差は、横拘束形式および横補強量に依存した 偏りも殆ど認められないため、横拘束形式の異なる鋼管 モルタルおよび帯筋モルタルの支圧強度に及ぼす母材モ ルタルの圧縮強度 (σ_c) および横補強量 ($P_W \cdot \sigma_y$) の影 響は,式(2)中のF値およびC値を,それぞれ式(4)およ び式(5)を用いることによって評価できるといえる。

3.3 変形特性

(5)

図-7および図-8は、それぞれ鋼管モルタルおよび

帯筋モルタルの荷重ー軸変位関係に及ぼす横補強比の影 響を支圧径別に示した例である。まず、鋼管モルタルの 荷重一軸変位関係に及ぼす横補強比の影響を示した図ー 7によれば、全面加力時(支圧径=145mm)の荷重一軸 変位関係は、横補強比が大きくなるとともに最大荷重お よび耐荷性能の向上する傾向が観察されるが、支圧径が 50mmの場合は、プレーンモルタルの場合を除けば、横 補強比に関わらず何れの試験体も極めて延性的な変形特 性を示している。特に、鋼管の肉厚が2.3mm (Pw=3.07%) の荷重一軸変位関係は、最大荷重後も耐荷性能が殆ど低 下することなく荷重を維持しており、高い靱性改善効果 が認められる。これに対して、帯筋モルタルの荷重一軸 変位関係に及ぼす横補強比の影響を示した図-8によれ ば,最大荷重,最大荷重時の軸変位および圧縮靱性は, 前述の鋼管モルタルの場合と同様に、支圧径に関わらず 横補強比が大きいほど増大する傾向を示しているが、大 変形領域における耐荷性能は、個々の試験体の破壊過程 の相違に応じて著しい違いが認められる。すなわち、最 大荷重後の確率的に生じるひび割れ進展に伴う局所応力 の集中によって、帯筋の破断や帯筋間モルタル部のせん 断滑り破壊が生じることで耐力が急激に低下している。

以上のこのことから,支圧荷重を受ける横補強モルタ ルの圧縮靱性は,横補強比が大きくなるに従って著しく 改善されるが,その改善効果は横拘束形式によって相違 するといえる。そのため,今後はコンファインドコンク リートの支圧特性に及ぼす横補強量および横拘束形式の 影響について詳細に検討し,定量化を行う必要がある。

4. 結 論

- 1) 圧縮耐力は、横拘束形式および支圧径に関わらず鋼
 管と帯筋によるコンファインド効果により横補強量
 が大きくなるとともにほぼ直線的に増大する。
- 2)支圧強度に関する実験値は、六車・岡本式による傾向と同様に、支圧径が小さくなるに従って増大するが、六車・岡本式による推定結果は、鋼管モルタルおよび帯筋モルタルの何れの場合も過小評価とな

り,かつ誤差は横補強比が大きくなるほど増大する。

- 3)横拘束形式の異なるコンファインドモルタルの支圧 強度に及ぼす横補強量の影響は、支圧強度式中のF 値およびC値を横拘束形式に応じて作成した式(4) または式(5)を用いることによって評価ができる。
- 4)支圧荷重を受ける横補強モルタルの圧縮靱性は、横 補強比が大きくなるに従って著しく改善されるが、 その靱性改善効果は横拘束形式によって相違する。

謝 辞

本実験とデータ整理に際して多大なご助力を得た愛知 工業大学学部学生の石川雅貴君,小野田智史君,織坂裕 太君,河合雄介君,川北有輝君,此島規仁君,酒井芳之 君および中井一貴君に対して謝意を表します。また,本 実験には,愛知工業大学耐震実験センターの施設を利用 し,かつ本研究費の一部として愛知工業大学耐震実験セ ンターの研究費を使用したことを付記し謝意を表する。

参考文献

- 新技術調査検討会:新技術調査レポート「杭頭半剛接構法」,建築コスト研究,第60号, pp.64-72, 2008.1
- 2)山田和夫,山本俊彦,伴幸雄,河邊拓也:鋼管で補強さ れた杭頭半剛接接合部の1軸圧縮特性に関する基礎的研 究,セメント・コンクリート論文集, No.61, pp.204-210, 2008.2
- 3)山田和夫,関俊力,巻幡悠佑:鋼管で補強されたコンク リートの1軸圧縮特性に及ぼす調合の影響,コンクリー ト工学年次論文集, Vol.30, No.1, pp393-398, 2008.7
- 4) 山田和夫,関俊力,山本俊彦,伴幸雄:鋼管形式による 杭頭半剛接接合部の1軸圧縮特性に関する基礎的研究, セメント・コンクリート論文集, No.62, pp.240-247, 2009.2
- 5)山田和夫,関俊力,巻幡悠佑:鋼管で補強されたコンク リートの支圧特性に関する基礎的研究,コンクリート工 学年次論文集, Vol.31, No.1, pp.469-474, 2009.7
- 6) 山田和夫, 関俊力, 瀬古繁喜, 三井健郎: 横拘束コンク リートの支圧特性に関する基礎的研究, コンクリート工 学年次論文集, Vol.32, No.1, pp.299-304, 2010.7
- 7)六車熙,岡本伸:局部荷重を受けるコンクリートの支圧 強度に関する研究,プレストレストコンクリート,第5 巻,第5号,pp.22-29,1963.10