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Abstract

The thesis studies optimal inspection and maintenance policies for high reliable sys-
tems. Some modified and extended inspection models from the viewpoint of actual
models are considered. Using the reliability theory, such models are mathematically
analyzed and useful inspection schedules are determined. Reasonable costs of inspec-
tions and failures for each model are introduced, and the expected costs until the
detection of failures are obtained. Optimal inspection policies which minimize these
expected costs are derived analytically and numerically. In particular, these results
would be prac-,tic:ally applied to determine inspection schedules for systems such as dig-
ital control devices. Further, optimal maintenance and inspection policies for a finite

interval are similarly considered and are analytically discussed.

This thesis is divided into 7 chapters. An initial chapter gives the introduction
which is constructed by the review of literatures and the organization of this thesis.
Chapters 2 to 4 consider the modified inspection models and discuss these optimal
policies: Chapter 2 studies optimal inspection policies for a two-unit system. First,
the system operates as a two-unit system, and when one unit fails, it operates as a
single-unit systemn. The system is checked continuously or periodically while it oper-
ates as a two-unit system, and is checked periodically by self-diagnosis after a failed
unit is detached from the system. Chapter 3 studies optimal inspection policies for

a system with self-testing which can detect some failures without performing external
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inspection. However, the failure might not be detected rapidly by self-testing, and so,
it would be necessary to check the system periodically by inspection. This chapter cou-
siders the model where a failure is detected by either self-testing or periodic inspection.
Then, optimal inspection policies which minimize the expected costs are analytically
derived. Chapter 4 studies optimal maintenance and inspection policies for a finite
interval. Optimal policies which minimize the expected costs of periodic replacement
with minimal repair, block replacement, simple replacement and inspection policy are
derived for a finite interval. Chapter 5 studies optimal inspection policies for a sys-
tem with two types of inspection: There might exist some failures which can not be
detected by type-1 inspection and can be detected only by tvpe-2 inspection, however,
type-1 inspection has a lower cost than that of type-2 inspection. An optimal number
to perform type-1 inspection until the next type-2 inspection is analytically derived.
Chapter 6 considers an extended model in Chapter 5. where the system is replaced at
the specified N-th type-2 inspection. The expected cost per unit of time is analytically
obtained, and an optimal number to perform type-1 inspection until the next type-2
inspection is numerically derived.

Finally, in Chapter 7, the results are summarized.
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Chapter 1

Introduction

In recent years, many systems such as digital control devices and other devices for in-
formation processing have been greatly developed and become widely used. Therefore,
the improvement of their reliability has become necessary and impor;cant. For instance,
some failures of systems might incur great losses, and sometimes, might cause a social
confusion. The cbmplexity of systems has dramatically increased, and as a result, it
has become much more difficult to predict the occurrence of failures. Therefore, it is in-
dispensably necessary and greatly important to check systems suitably and detect their

failures by inspection. However, the cost of inspection would be usually very expensive |
and it would be difficult to develop the method of inspection to detect any failure.
Therefore, it is of great interest to determine appropriate schedules of inspection from

the viewpoints of reliability and economics.

For the purpose to assure of the reliability and economics, the numerical evaluation
of activities for inspection and maintenance have been great importance with globaliza-
tion and deregulation of the world. Many reliability researchers have studied theoretical
and practical problems to evaluate and improve the reliability and economics for com-
plex phenomena of real systems, using mainly stochastic processes. The reliability

theory has been actually applied to evaluate these criterion in several practical fields
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2 CHAPTER 1. INTRODUCTION

such as industrial, mechanical and electronic engineerings. Further, this theory has
been also applied to information, network and communication systems.

In this thesis, we form some stochastic models in which systems are checked to
detect their failures by inspection at suitable times by inspection. We are mainly
interested in optimal scheduled times of inspection which minimize the total expected
cost from the beginning of system operation to the detection of failure and the expected
cost per unit of time as objective functions. We are also concerned with the expected
costs and optimal policies when systems have to operate for a finite interval. Further,
we give numerical examples at each chapter to understand the results easily and make

some useful discussions for them.

1.1 Inspection Policy

Some failures of systems might incur great losses, and sometimes, might cause a social
confusion. Hence, it is necessary to check systems at suitable times and to detect early
their failures. However, it might incur much loss cost and work when inspection is
done so frequently: Therefore, by making a trade-off between the loss cost of failure
and the cost of inspection, we have to determine optimal schedules of inspection.

Optimal inspection policies have been established as a great part of reliability the-
ory. In this thesis, we consider one cycle from the beginning of system operation to the
.detection of failure, and adopt the expected cost on one cycle as an objective function.
Then, we discuss optimal inspection policies which minimize the total expected cost of
one cycle and the expected cost per unit of time, which is given by [Ross (1970)]

Expected cost per cycle

Expected time per cycle’
Barlow and Proschan (1965) summarized the inspections policies which minimize

two expected costs until the detection of failure and per unit of time. Ross (1970) and
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Osaki (1992) explained plainly the stochastic processes and applied them to typical
stochastic and reliability models. Ben-Daya and Duffuaa (2000), and Gertsbakh (2000)
overviewed many maintenance policies. However, all failures can not be detected upon
inspection. The imperfect-inspection model was first treated in Weiss (1962), Coleman
and Abrams (1962), and Morey (1967). Apostolakis and Bansal (1977) considered
imperfect inspections due to human errors, and Srivastava and Wu (1993) estimated
the parameter of an exponential failure distribution, using the maximum likelihood
method. Osaki (2002) and Pham (2003) edited the reliability books with advanced

researches and applications, and summarized extensively optimal maintenance policies.

Most faults occur intermittently in digital systems. Su et al. (1978), Koren and
Su (1979), Nakagawa et al. (1989, 1990) discussed optimal periodic tests to detect
intermittent faults. Chung (1995) developed a simple algorithm to compute an optimal
time, and Ismaeel and Bhatnagar (1997) introduced a random test for detection of

faults in combinational circuits.

Inspection models have been recently applied to many actual systems: Christer
et al. (1982, 1984, 1989) reported the inspection maintenances of building, industrial
plant and underwater structure. Sim et al. (1984a, 1984b, 1985) analyzed the periodic
test of combustion turbine units and standby equipments in dormant systems and
nuclear generating stations. Further, the following inspections’were made: Fail-safe
structures by Young (1984), manufacturing stations by Cassandras and Han (1992),
automatic trips and warning instruments by Sherwin (1995), bearings by Garners et al.
(1998). Ito and Nakagawa (2000, 2004) discussed optimal policies for FADEC (Full-
Authority Digital Engine Control) which is a control device of gas turbine engines and

mainly consists of a two-unit system.

At present, some terrible industrial accidents of plants have happened in Japan,
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and caused serious damage and great losses to a modern society. Risk management for
such plants has become more and more important, however, theoretical arguments for
these problems have not been advanced sufficiently. The results and techniques showed
in inspection policies would be useful and helpful for maintaining in good condition of

many real systems.

1.2 Technique for Detection of Failure

It is great important to develop advanced techniques for thé detection of failure. How-
ever, the development and realization become increasingly difficult because systems
have become larger and more complex than ever before. Actually, several useful meth-
ods to detect failures have been proposed: Jha and Gupta (2003) summarized the
techﬁiques to test digital systems in detail. O’Connor (2001) surveyed widely the tech-
nologies related with tests for electronic circuits. Lala (2001) summarized fault-tolerant
design techniques with self-checking of digital circuits.

A simple inspection method for systems such as digital circuits is the comparison-
checking with outputs of two-unit system. The performance of the system might not
degrade, however, it would be often expensive to configure it. In this case, it is also
necessary to determine mechanically which units has failed and is detached from the
system [Nanya (1991)].

One method to check analogue circuits is mainly measurements of parameters such
as voltage, resistance, impedance, and so on. The basic approach to test digital circuits
is to check whether output codes for an assumed output set are correct or not. To detect
failures certainly, some codes which are called test pattern should be inputed in systems
and output codes are checked directly. However, as the complexity of systems have

greatly increased, it has become very difficult to design the test pattern to detect any
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failure, and moreover, the time to perform the test has become too long. Other popular
and simple methods are watch-dog timers and watch-dog processors, which interrupt
some signals and check the responses periodically [Touma (1990), Nanya (1991)].

In general, the properties of self-checking, which involves those of fault-secure and
self-testing, are required to design high reliable systems. Fault-secure means the prop-
erty that a failed system outputs either the correct code or codes which are not in an
assumed output code space. That is, the system with fault-secure does not output
incorrect codes which are not required as the result of input codes. Self-testing means
that a failed system outputs codes which are not in an assumed code space for at
least one input code, that is, the system with self-testing can detect any failure with-
out performing external inspection. However, the realization of perfect design with
self-checking for complex systems would be impossible [Lala (2001), O’Connor (2001)].

In this thesis, we treat some inspection policies for several systems such as digital
control devices for aircraft engines. The inspections with above methods for such
systems are realized as periodic external inspections with tester or self-diagnosis, and

it is necessary to determine suitable schedule times of inspection.

1.3 Outline of Thesis

This section describes the outline of this thesis. This thesis is divided into Introduction,
Chapter 2-6, Conclusions and Bibliography.

Chapter 2 considers inspection policies for a two-unit system. The system firstly
operates as a two-unit system and is checked by comparison-checking. When one
unit fails, the system operates as a single-unit system and is checked periodically by
self-diagnosis. We introduce two costs of one check for a two-unit system and for a

single-unit system which are not the same with each other. In the model, two cases of
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continuous and periodic comparison-checking are adopted, and the self-diagnosis checks
the system periodically for each case. The total expected cost and expected cost per
unit of time are derived, and optimal inspection intervals which minimize the expected
cost per unit of time are analytically discussed. Numerical examples are presented

when the failure time of each unit has an exponential distribution.

Chapter 3 considers inspect.ién policies for a system with self-testing. The sys-
tem with self-testing can detect its failure during its operating state without external
inspection. However, the detection by self-testing might has the latency, i.e., some
failures might not be detected rapidly. Therefore, to achieve a high reliability, the
system should be checked by the external inspection at scheduled times. Thus, if the
system fails, then its failure is detected by self-testing or at the next periodic inspec-
tion, whichever occur first. The total expected cost and expected cost per unit of time
are derived, and optimal inspection intervals which minimize them are analytically
discussed. Numerical examples are presented when the failure time has an exponential

distribution.

Chapter 4 consi.ders maintenance and. inspection policies when a system has to
operate for a finite interval. In actual fields, most systems have a finite span of their use.
Using the partition method for this problem, a finite interval is divided into equal parts
of maintenance or inspection [Nakagawa (2004)]. Optimal policies which minimize the
expected costs of periodic replacement with minimal repair, block replacement, simple
replacement and inspection policy are derived for a finite interval. Further, we show
how to compute optimal checking times numerically when the failure time has a Weibull

distribution and gamma distribution.

Chapter 5 considers inspection policies for a system which is checked by two types

of inspection: Type-1 inspection has a lower cost than that of type-2 inspection, and
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type-1 inspection checks the system more frequently than type-2 inspection. However,
there exist some failures which vcan not be detected by type-1 inspection and can be
detected only by type-2 inspection. It is assumed that failures are classified into two
cases where they can be detected by type-1 inspection and not detected with certain
probability. We derive analytically an optimal number to perform type-1 inspection
until the next type-2 inspection. Finally, numerical examples are given when the failure
time distribution is exponential.

Chapter 6 considers a replacement policy for the same inspection model as in Chap-
ter 5: The system with two types of inspection is replaced at the specified number of
type-2 inspection. We derive an optimal number to perform type-1 inspection until
the next type-2 inspection. Numerical examples are computed whgn the failure time
distribution is exponential.

Finally, Chapter 7 summarizes the result derived in this thesis.






Chapter 2

Optimal Inspection Policies with
Comparison-Checking for
a Two-Unit System

This chapter considers optimal inspection policies for a two-unit system. First, the
system 1s checked continuously or periodically by comparison-checking. When one unit
fails, the failed unit is detected by comparison-checking and the system operates as a
single-unit system. After that, the system is checked periodically by self-diagnosis. The
total expected cost and expected cost per unit of time are derwed, and optimal inspection
policies which minimize the expected cost per unit of time are analytically discussed.

Numerical examples are given when the failure time has an exponential distribution.

2.1 Introduction

In this chapter, we consider optimal inspection policies for a two-unit system such as
digital control devices for aircraft engines. It is assumed that the system has input
and output codes sequentially. When the system starts to operate, both units are in
operational state, and their outputs are compared with each other to detect its failure

early. That is, the system is checked by comparison-checking, which is commonly used
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10 CHAPTER 2. COMPARISON-CHECKING

because its implément-al method is relatively easy. When the failure is detected by
comparison-checking, the failed unit is detached and the system operates as a single-
unit system. After that, the system is checked periodically by self-diagnosis. As actual
examples of self-diagnosis, there are watch-dog timer, inputing test pattern codes,
methods to check the parameters such as voltage, resistance, impedance, and so on

[O’Connor (2001)].

We consider two models of comparison-checking model:

(1) Continuous comparison-checking model: When the system operates as a two-
unit system, it is checked continuously by comparison-checking. In other words, the
comparison-checking is done for each output code sequentially. Thus, incorrect output
codes of a failed unit can be detected immediately. But, the loss cost for performing
the comparison-checking increases, because a larger number of cmpparison—checking
is executed. Thus, this-model should be used in the case where high reliability and
quality outputs are acquired.

(2) Periodic comparison-checking model: One unit (unit A) is connected with the part
of output, and the other unit (unit B) operates as a standby unit (see Figure 2.1). The
system is checked periodically by comparison-checking. It is assumed for simplicity
that the intervals of comparison-checking for a two-unit system and of periodic self-
diagnosis for a single-unit system are the same. In this model, although the latency
time to detect failures of a two-unit system may occur, the system will be able to have

a sufficient reliability.

A typical example for such systems is FADEC (Full-Authority Digital Engine Con-
trol): FADEC is a digital control unit of gas-turbine engines for systems such as air-
crafts, and in general, consists of as a two-unit system to require a hight reliability. Re-

cently, FADEC’s are used as control units for general industrial gas-turbine engines, and
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A

unit A I
input ‘

output
Comparator

I 3

unit B | |

Y

Figure 2.1: System with two units.
several researchers evaluated the reliability and interval of their self-diagnosis [Kodo
Ito and Nakagawa (2000, 2003), Hjelmgren et al. (1998), Elks et al. (2000)].

It is supposed that when the failure of a single-unit system is detected and removed,
the system becomes like new and starts to operate again as a two-unit system. Fur-
thermore, the inspections by comparison-checking and self-diagnosis can detect any
failure. We obtain the expected costs analytically, and derive the optimal inspection
intervals which minimize them. Numerical examples are finally given when the failure

time has an exponential distribution.

2.2 Model and Assumptions
2.2.1 Continuous comparison-checking model

Consider a system which is configured as a two-unit system whose outputs are checked
by comparison-checking for each processing time. When failures of the system occur,
they can be detected immediately by comparison-checking. But, more frequent number
of comparison-checking increases the loss cost for degradation of system performance,
so that, it should be used only in the case where high reliability and quality output are

acquired.
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For the above model, we define the following assumptions:

(i)

(i)

(iii)

(iv)

When the first unit fails at time ¢;, the system is switched to a single-unit system,

and the next failure of the other unit occurs at time t,.

While the system operates as a two-unit system, it is checked continuously by
comparison-checking and can detect any failure instantly, i.e., any failure is de-
tected at time ¢;. When the failure is detected, the failed unit is detached and
the system operates as a single-unit system. After that, a single-unit system is
checked by self-diagnosis at periodic times ¢ + k7 (k = 1,2,...) (see Figure 2.2).

Any replacement or maintenance before the detection of failure is not considered.

The failure time distribution of each unit has an independent and identical general

distribution F'(¢) with finite mean 1/), where F(t) = 1 — F(t).

A cost ¢ is the loss cost per unit of time for the time elapsed between a failure
of a single-unit system and its detection at the next time of inspection, and c,
is the constant cost for maintenance or replacement, when the second failure is

detected by self-diagnosis.

A cost ¢, is the loss cost per unit of time for the time elapsed between the begin-
ning of system operation and the detection of failure at time ¢; by comparison-
checking, and ¢; is the cost for one check by self-diagnosis, where ¢/ > ¢, and

Cd > Cel-

After detecting the first failure of a two-unit system, the loss cost and time,
and the performance degradation needed to locate and detach the failed unit are

negligible.
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2.2
Cel (&) G &) C;
x/T\'/T\J—- -
0 t1 to
1 2 n n+1
= comparison inspection O self-diagnosis x failure

Figure 2.2: Comparison-checking model with each processing time.
We define one cycle as the time from the beginning of system operation to the

detection of the second failure. Then, the mean time of one cycle is

o, X (n—i—l)T—Hl
/ / ((n+1)T + tl]dF(tg)}dF(tl)
n=0v"n

T+t

- 2T/ zF(nT+t1)dF( 1) + /X}F(tl)thl. (2.1)

0 n=0

Further, the total expected cost of one cycle is

oo '>° (n+1)T+t
/ / {cati +ci(n+1) + ca[n + )T +t1— tg]}dF(tg)]dF(tl) +cr
n=0 nT+t)

o0

s /O {((, edD)Y (nt 1) [F(nT+12) ~ F((n+1)T+1)]

n=0

+ /"’“[(Cm + cq)ty — cdtQ]dF(t,_,)}dF(tl) +e,

ty

= _,/\ [ (citcqT) Z nT+f1 — Cd/ F(tg)dt«z—l—Celtl—F_(tl)]dF(tl) + ¢, (2.2)
0 = ¢

1

The reason of two times on the first terms in (2.1) and (2.2) is that either failure of

unit 1 or unit 2 may occur.
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Thus, the expected cost C.(T') per unit of time is

¢ + 2/ cZ +¢qT) Z nT +t) — cd/ F(t)dty + cort1 F( tl)] dF(t)
0 t1

Ce(T) = = =
/ Z (nT + t1)dF(t;) + /0 T (t1)%dty
= (2.3)
Obviously,
C0) = Jim Gu(T) = o, 2.4)
Ce(o0) E:’lgl; Ce(T) = cq. (2.5)

Therefore, there exists an optimal interval 77 (0 < TF < oc) of inspection which

minimizes C.(T).

2.2.2 Periodic comparison-checking model

Considers the system which is checked periodically by comparison-checking at the same
interval as that of self-diagnosis. The difference from the previous model is the interval
of comparison-checking for a two-unit system. In this model, the reliability might
be less than the previous model because the latency to detect failures of a two-unit
system occurs, but, the performance degradation due to comparison-checking might
be smaller. Generally, if this system has sufficient reliability then it would be more
realistic than the previous model.

For this model, we define the following assumptions:

(i) Both intervals of comparison-checking for a two-unit system and self-diagnosis
for a single-unit system are the same. That is, the system is checked always at

periodic times k7T (k = 1,2,...), irrespective of the number of operating units.
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(ii) A cost ce2 is the loss cost per unit of time for one check by comparison-checking
for a two-unit system, and ¢; is the cost for one check by self-diagnosis for a

" single-unit system.

(iii) Unit A which is first connected to output fails at time ¢, (0 < ¢, < 00) and unit

B which is first in standby fails at time ¢, (0 < ¢, < 00).
(iv) Make the same assumptions as (iii), (iv) and (vi) in the previous model.

The total expected cost of one cycle is classified into the following three cases:
NET <ty < (k+1)T<mT <t, <(m+1)T
Suppose that unit A fails during (kT, (k+ 1)T'] (k= 0,1,---) before unit B fails, and
after that, unit B fails during (mT, (m+ 1)T] (m =k + 1,k +2,- -+ ) (see Figure 2.3).
Then, the expected cost of one cycle is

o (m+1)T m—=1  o(k4+1)T
Z/ [Z/ {cea(k+ 1) + c;(m — k)
kT

m=1vmT k=0

+ca[(k+ )T = to + (m +1)T — t,] }dF(ta)] dF (ty). (2.6)

VKT <ty < (k+1)T <mT <t, < (m+1)T

Suppose that unit B fails during (k¥T,(k + 1)T'] (k = 0,1,---) before unit A fails,
and it is detached from the system. Thereafter, unit A fails during (mT, (m + 1)T']
(m=k+1,k+2,--) (see Figure 2.4). Then, the expected cost of one cycle is

X am+1)T M=l A (k41T
Z/ Z/ [cea(k + 1) + ci(m — k) + ca((m + 1)T — ta)]dF(tb)}dF(ta).
m=17/mT k=0 KT

(2.7)
3) AT < toty < (k+1)T
Suppose that both units A and B fail during (K7, (k + 1)T'] (k = 0,1,2,--+), and

their failures are detected by the next comparison-checking (see Figure 2.5). Then, the
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Ce2  Ce2 .Cqd C; C; Cd
: = - — - O —0—
ta tp
0 T 2T (k+1)T (m+1)T
M comparison inspection O self-diagnosis X failure

Figure 2.3: Case 1 of periodic compafison~checking.

|
:

Figure 2.4: Case 2 of periodic comparison-checking.

Ce2 Ce2 Cd
— -
ty tq
0 T 2T (k+1)T

Figure 2.5: Case 3 of periodic comparison-checking.
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expected cost of one cycle is

0 (k+1)T
Z /AT [cea(k + 1) + ca((k + 1)T — to) | [F((k + 1)T) — F(KT)]dF(t,). (2.8)
k=0 N

Thus, the total expected cost of one cycle is obtained by summing equations (2.6),

(2.7) and (2.8), and by adding the maintenance cost ¢, as follows (see Appendix 2.1) :

e+ (Cen — ¢;) Z F(mT)? + ¢ Z [1 — F(mT)?]
m=0 m=0
oc (m+4+1)T
+ Y [1+ F(m)] / [P0 - P (2.9)

Similarly, the mean time of one cycle is

o< (m+1)T m=1 (k4+1)T 4
2y / [Z / (m + l)TdF(tb)]dF(ta)
m=1YmT w=0 Y kT

+ i / (kH):(Fk + V)T [F((k + 1)T) — F(KT)]dF(t,)
k=0 KT

~T [2 i F(mT) — YZj F(mT)Q]

=T i [1 - F(mT)?]. (2.10)
m=0

Thus, the expected cost C,(7T) per unit of time is, from (2.9) and (2.10),

¢ + (cea—ci) i F(mT)? + ¢ i [1—F(mT)?]
o m=0 ()T m=0
+ ¢q Z [1+F(mT)] / [F(t)—F(mT)]dt
CP(T) _ m=0 mT

T Z[l — F(mT)?)

m=0
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Obviously,
Cy(0) = ilru% Cp(T) = o0, : (2.12)
Cp(o0) = 7lim Cp(T) = 4. (2.13)

- Therefore, there exists an optimal self-diagnosis interval Ty (0 < T, < oo) of inspection

which minimizes Cy(T).
2.3 Optimal Inspection Policy

2.3.1 Continuous comparison-checking model

Consider the continuous comparison-checking when the failure time of each unit has
an exponential distribution F(t) = 1 —e~. Then, the total expected cost of one cycle

in (2.3) is rewritten as

e~ M2dty + cc1i1e_m] Ae™Midty + ¢

%} o oo
9 / I:(ci + CdT) Ze—)\(nT—Hl) - Cd/
JO

n=0 t1
1 T 1 Cel
=¢| ——= il ———= — T — G 2.14
C(l—e“'\T>'+pd<1—e"\T )\>+2>\+(' (2.14)
The mean time of one cycle in (2.1) is | | h
Z —A(nT+2t1) ~2\M1 s =
T/O 2)\e n ! dtl +/() e l(ltl = 1—8_)‘T +2)\ (215)

n=0

Thus, the expected cost C,(T) per unit of time is

20¢; — (3cqg—2Acr—cCo1)(1—eT)

CeT) = ca+ N +1— e

(2.16)

We find an optimal self-diagnosis interval 77 which minimizes the expected cost
Co(T). Differentiating C'o(7") with respect to 7" and putting it equal to 0, we have

1—(1+AT)e T
A

(3cqg — 2X¢p — ce1) +¢i(1—e?T) = 3¢y (2.17)
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Letting denote the left-hand side of (2.17) by Q.(T),

Qc(o) = 71,12% QC(T) =0, (2'18)
Quleo) = Jim QuT) = =0T, (2.19)
Q;(T) =M [(3ca — 2Xe, — ca1)T + ci. (2.20)

It can be easily proved that Q.(T') is strictly increasing from 0 to Q.(co) from the
assumptions of ¢g/A > ¢, and ¢g > ce1.

Therefore, we have the following optimal policy:

(i) If (3cq—2Acr —ce1) > 2A¢; then there exists a finite and unique T (0 < T < 00)
which satisfies (2.17).

(i) If (3ca — 2Ac, — ce1) < 2A¢; then T = o0, i.e., no periodic inspection should be

made and C,(o0) = ¢4.
In general, since ¢q4/A > ¢, + ¢4, case (ii) will not occur in practice.

2.3.2 Periodic comparison-checking model

Consider the periodic comparison-checking when the failure time of each unit has an
exponential distribution F(t) = 1 — e™*. Then, the total expected cost in (2.9) is

rewritten as

- - -2
ce) . § e 2/\mT+(1 E (26 amT _ e ..)\mT)

m=0 m=0

(m+1)T
+ g Z —/\mT / (C—)\mT _ e—)\t) dt
7

m=0 mT

oo + 2cie™ + cg[T(1 +2e72T) — (1 + 7T — 2e=2T) /)]

=Cr+ 1 — o-23T
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The mean time in (2.10) is rewritten as

. 14 2eM
-amT =2xmT\ __
=0

Thus, the expected cost C,(T) per unit of time is

ca+ 26T + (1= ¢7T) — 1+ N 27D

w T = T
Go(T) = cat T(1+ 2¢7)

(2.23)

Differentiating the expected cost C,,(T") with respect to 7" and putting it equal to 0, we

obtain
4eep(1 — ™) + (de; + 26, Te ™) (1 — ™27
+ [2(0,——(:92)-}—%(1 + ze-ﬂ')‘l] [1— (14 AT)e?T]
—cp (1421 = (14 20T)e ] = 6¢; + 3ceo. (2.24)
Letting denote the left-hand side of (2.24) by Q,(T),
@p(0) =0, (2.25)
Qp(oc) = 6¢; + 2¢e + %cd - Cp. (2.26)

Thus, if c4/A > cea+ ¢, then there exists exists a finite Ty (0 < Ty < oo) which satisfies

(2.24).

2.4 Numerical Examples

We compute numerically optimal intervals which minimize the expected costs per unit
of time for each model. First, we consider the continuous comparison-checking and cal-
culate the optimal interval T7'. Second, we consider the periodic comparison-checking
and calculate the optimal interval 7. All costs are normalized to ¢; as a unit cost,

i.e., they are divided by ¢;.
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Table 2.1: Optimal diagnosis interval AT x 10° of continuous comparison-checking
model for cg/(A¢;) and c,/c; when ce1/(Ae;) = 10°.

¢ /e x 107°
cd/()\ci) x 1077 1 T/ 5 I 10
1 44.95 | 45.57 | 46.38
2 31.70 | 31.91 | 32.19
3 25.86 | 25.98 | 26.13
4 22.39 | 22.46 | 22.56
5 20.02 | 20.07 | 20.14
6

7

8

9

18.27 | 18.31 | 18.37
16.91 | 16.95 | 16.99
15.82 | 15.85 | 15.89
14.92 | 14.94 | 14.97
10 14.15 | 14.17 | 14.19

Table 2.1 gives AT x 105 which minimizes the expected cost C.(T) and satisfies
(2.17) for ¢,/c; x 107° = 1, 5, 10 and cq/(\¢;) >< 1007=1,2,3,4,5,6,7,8,9, 10 when
Ce1/(Ac;) = 10°. Tt is shown that AT decreases as c4/(\¢;) increases, and increases as
¢;/c; increases. This indicates, when the failure rate A of each unit and the loss cost
cq increase, T decreases, i.e., it is better to detect failures as early as possible. For
example, cg/(Ac;) X 1077 = 1 and ¢, /c; x 1075 = 1, optimal AT x 10° = 44.95. That
is, when the mean time of each unit is 1/\ = 3 x 10* hours (approximately 3.5 years),
Ce1/ci = 1/3x 10, cg/c; = 1/3 x 10° and ¢, /c; = 10°, optimal interval T} is about 13.49

hours.

Table 2.2 gives AT x 10° which minimizes the expected cost Cp(T') and satisfies
(2.24) for ¢, /c; x 107 =1, 5, 10 and cq/(A¢;) x 1077 =1, 2, 3, 4, 5, 6, 7, 8, 9, 10 when
Cea/ci = 10°. This indicates that AT} increases as cq/(Ac;) increases. This shows the

similar tendencies as the continuous comparison-checking model in Table 2.1.

Table 2.3 presents ATy X 103 which minimizes the expected cost C,(T") and satisfies
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Table 2.2: Optimal interval AT, X 105 of periodic comparison-checking model for

ca/(Ae;) and ¢, /c; when ceo/c; = 0.1.

_ crfei x 1073
Cd/(ACi) x 10~f 1 5 10
1 37.26 | 36.62 | 35.86
2 26.40 | 26.17 | 25.90
3 21.57 | 21.45 | 21.30
4 18.69 | 18.61 | 18.50
5 16.72 | 16.66 | 16.59
6 15.26 | 15.22 | 15.16
7 14.13 | 14.10 | 14.05
8 13.22 | 13.19 | 13.16
9 12.47 | 12.44 | 12.41
10 11.83 | 11.81 | 11.78

Table 2.3: Optimal interval AT x 10° of periodic comparison-checking model for ceo/c;

and cq/(A¢;) when ¢,/c; = 5 x 10°.

ca/(Ac;) x 1077

Cea/Ci T

10

0.01 | 35.82 | 16.30

11.55

0.05 | 36.18 | 16.46

11.67

0.1 | 36.62 | 16.66

11.81

0.5 | 39.95 | 18.18

12.88

(2.24) for cep/c; = 0.01, 0.05, 0.1, 0.5 and c4/(A¢;) x 1077 = 1, 5, 10 when ¢, /¢; =

5 x 10%. This indicates that AT increases as Cep /c; increases. Thus, if the cost cea/c;

of comparison-checking is higher, it would be better to make its interval larger.

2.5 Conclusions

This chapter has considered a two-unit system which is checked by comparison-checking

when it operates as a two-unit system, and by self-diagnosis after it is switched to
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a single-unit system. We have considered two models of continuous and periodic
comparison-checking. First, the total expected cost of one cycle and the expected
cost per unit of time have been analytically derived. Then, when the failure of each
unit has an exponential distribution, we have obtained the expected costs and derived
the optimal intervals of inspection which minimize the expected costs. It has been
shown in numerical examples that the optimal interval is greatly affected by the loss
cost for the time elapsed between a failure and its detection.

The studies of reliability and inspection for high reliable systems become more im-
portant subjects in real industries as systems become more complex and large. Further
studies from such viewpoints are desirable, together with estimations of parameters for

actual systems.
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Appendix 2.1

Derivation of equation (2.9)

The expected costs in (2.6), (2.7) and (2.8) are calculated for each coefficient of costs:

First, the term of c.» is

0 a(m+1)T M=l A(k+1)T (k+1)T :
22/ [Z/ (k+1)dF(tq dF (ty) +Z/ (k+1)[F((k+1)T)— F(KT)]dF (ta)
m=1YmT =0 kT

i(h + 1)F((k+ )T)[F(KT) = F((k + 1)T)]

- if(/ﬁ)? (A.1)

Second, the term of ¢; is

2 f: / (mH)T[mi /k (kf:r)LT— k)dF(ta)] dF (t)

m=1YmT =0 T

=2 k[F(kT) = F((k+ 1)T)][1 - F(kT) — F((k + 1)T)]

k=0

=2 i [F(KT) — F(kT)?]. (A.2)
k=0

Finally, the term of ¢4 is the sum of the following three equation:

0 “(k+1)T

[F(kT)=F((k+1)T)] / ((k-+1)T—t] dF (1)

k=0 kt

(m+1)T

+ 2 z“: F(mT) / [(m+ 1T —t]dF(t)

m=1 mT

P F(k+ 1T / e 0T - ar )
k

k=0 T
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0 (m+1)T
= 5[+ F(mT)) / ((m + 1)T — 1] dF (1)

m=0 mT
5] (m+1)T
= "1+ F(mT)] / . [F(t)—F(mT)]dt. (A.3)

m=0
By summing (A.1), (A.2) and (A.3) and adding the maintenance cost c,, the total

expected cost of one cycle is

e+ (Ce2 — ) ZF(mT)Q +¢ Z [1 - F(mT)?]
m=0 m=0
00 (m+1)T
+cg» [1+F(mT)] / i [F(t) — F(mT)]dt.

m=0






Chapter 3

Optimal Periodic Inspection
Policies for a System with
Self-Testing

This chapter considers optimal inspection policies for a system with self-testing: The
system with self-testing can detect any failure without performing external inspection.
However, some failures might not be detected rapidly. Therefore, it would be necessary
to perform the inspection periodically. The total expected cost and expected cost per
unit of time are obtained, and optimal policies which minimize them are analytically

derived. Numerical examples are given when the failure time is exponential.

3.1 Introduction

We consider a system such as digital control devices for aircraft engines which have
sequential input and output codes. We suppose that the system has the property of
self-testing: If the system has at least one input code which gives some output codes in
outside of an assumed output code space, when there exist any failure in an assumed
failure set, then the system has the property of self-testing. Therefore, any failure in

a failure set can be detected without external inspection by checking, whichever the

27
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output codes are in an assumed space or not. Thus, the system with self-testing can

detect any failure during the normal operation [Lala (2001)].

However, even if the system has input codes to detect some failures, they might
not be readily inputed to the system. Therefore, some failures might not be detected
rapidly by self-testing. Hence, to detect failures early and surely, it would be necessary
to perform external inspection such as inputting a set of test codes at periodic times.
In this case, if the system fails, then its failure is detected by éelf—testiﬁg or the next
periodic inspection, whichever occur first. Howefzer, it might incur much loss cost
to perform periodic inspection so frequently [O’Connor (2001), Savir et al. (1984a,

1984b), Shedletsky and McCluskey (1975a, 1975b), Parker and McCluskey (1975)].

In general, to design high reliable systems it is required to improve the property of
self-checking, where the self-checking involves properties of fault-secure and self-testing.
Fault-secure means the property that a failed system outputs either correct codes or
codes which is not in an assumed output code space. That is, the system with fault-
secure does not output codes which are in an assum_ed code space and incorrect for
the result of inpu.’c codes. In this chapter, we consider only the property é)f self-testing
and do not consider the property of self-checking, because we want to form stochastic
models from the viewpoint that the system can detect failures by itself without external

inspection, and fault-secure has no relation with these models [Lala (2001)].

In this chapter, it is assumed that the time from the occurrence of failure to its
detection by self-testing has a probability distribution [Savir et al. (1984a, 1984b)].
When failures are detected, the system becomes like new and starts to operate again.
Then, introducing the loss cost for the time elapsed between a failure and its detection,
the total expected cost until the detection of failure is obtained. Optimal intervals of

periodic inspections which minimize the total expected cost and the expected cost per
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fail%e
input ﬁ/\% output
- = system ---‘.----ﬁ
i
i
error (" failure )
checker I detection )

Figure 3.1: System with self-testing.
unit of time are analytically derived, using the self-detection rate. It is of great interest
that the self-detection rate plays an important role for analyzing such optimal policies.
Further, we consider the cése where there exist some failures which can not be detected
by self-testing with probability p. Finally, numerical examples are given when both
times of failure and its detection by self-testing are exponential. Moreover, we treat
a sequential inspection policy where inspection times are not periodic and made at

successive times.
3.2 Model and Assumptions

3.2.1 Periodic inspection model

Consider periodic inspection policies for a system with self-testing, which can detect

any failure. For this model, we define the following assumptions:

(i) The system is checked at periodic times kT (k = 1,2,...) by inspection. Thus,

when the system fails, its failure will be detected by self-testing or at the next
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periodic inspection, whichever occurs first.

(i) The failure time distribution has a general distribution F'(¢) with finite mean

1/), where F(t) =1 — F(t).

(iii) If we do not consider the detection of failure by periodic inspection, then the time
from a failure to its detection by self-testing has a general distribution G(z) with

mean 1/p (u > ), independent of the failure time, where 1/u might be infinity.

(iv) A cost c; is the cost for one check by periodic inspection, and ¢4 is the loss cost
per unit of time for the time elapsed between a failure and its detection by self-
testing or periodic inspection, whichever occurs first. A cost ¢, is the replacement

or maintenance cost for a failed system.

Figure 3.2 shows the processes of the system with self-testing: The horizontal axises
present the proceés of time. This system is checked at periodic times kT (k= 1,2,...)
by inspection, which incurs the loss cost ¢; for every one check. When the system
fails at time ¢ (kT <t < (k+ 1)T), the upper side shows the case where its failure
is detected at time t + z (< (k + 1)T) by self-testing, and the lower side shows the
case where its failure is detected at time (k + 1)T before the self-testing by periodic
inspection, i.e., (k+ 1)T <t + z.

We define one cycle as the time from the beginning of system operation to the
detection of its failure. Then, the mean time of one cycle is

A(T) = fi /A (:H)T { /O wﬂ)T_t(t +2)dG(z) + (k+ V)T G((k+1)T —t)|dF(t)

_ % N ; /O [F(T) = F((k + 1T - )] Gla) de, (3.1)
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C; C; G C;i C4
T
: » R —= -
t
0 T 2T (k+1)T
C; C; Ci Ci Cd C;
T
: " .- BT VN
t .
0 T 2T (b-+1)T
B periodic inspection X failure

Figure 3.2: Processes of system with self-testing.

where, in general, ®(t) = 1 — ®(t). In a similar way, the total expected cost of one

cycle is given by

oo (k+1)T (k+1)T—t
B(T)=Y_ /k [ /0 (cik + caz) dG ()

k=0 VKT

+ {ci(k+ 1) + cql(k + 1)T = ]} G((k + )T — t)J dF(t) + c,

e . T o . -
= ¢ Z{F(kT) - / [F(k:r) ~F((k+1)T - a:)J dG(m)}
k=0 0
o< T
+cay / [’F‘(kT) _F((k+ 1T - a:)}ﬁ(x) dz + ¢, (3.2)
k=070

It is evident that
B(0) = %}E%)B(T) = 00,

B(oo) = :111—1»1;, B(T) = % +cp.

Thus, there exists an optimal time 7* (0 < T* < 0o) which minimizes B(T).
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In particular, when G(z) = 1, i.e., any failure is detected only by periodic inspec-
tion, equations (3.1) and (3.2) are simplified as

oC

A(T) =T F(kT),
k=0
B( (CL"‘(’dTiO: +Cra v
k=0 : .

which agree with the results of the simple periodic inspection policy [Barlow and
Proschan (1965)].

Therefore, the expected cost per unit of time is, from (3.1) and (3.2),

C(T) = %%
i { /T[F(AT) F((k+1)T - )] dc;(x)} _ E}\i s
= cq + k=0
Z/ F((k+1)T = 2)]G(z) dz + 1/A
(3.3)
Evidently,

Thus, there exists an optimal time 7% (0 < T* < 0o) which minimizes C(T).

3.2.2 Sequential inspection model

Consider the sequential inspection policy for a system with self-testing, where intervals

of inspection are not periodic. For this model, we define the following assumptions:
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(i) The system is checked at successive times T}, (k = 1,2,...), where Ty = 0. Thus,
when the system fails, its failure will be detected by self-testing or at the next

inspection, whichever occurs first.

(ii) A cost ¢; is the cost for one check at times Ty (k = 1,2,...) by inspection, and
cq is the loss cost per unit of time for the time elapsed between a failure and its
detection at the next checking time, and ¢, is the replacement or maintenance

cost for a failed system.
(iii) Make the same assumptions as (ii) and (iii) of the previous model.
Then, in a similar way of obtaining (3.3), the expected cost of one cycle is given by
C(1.Ty,...)=

o /Tk+1{
k=0 Tk

Tip1—t '
/ (cik + cqz)dG(2) + [ci(k + 1) + ca(Tir1 — V)]G (Thy1 — t)} dF(t)

) X (L Trog1=Th __ .
=G kzzg {F(Tk) - /0 [F(Ty) = F(Tyxs1 — :L‘)]dG(a:)}
i Tiet1—Th . .
rey / (F(T}) — F(Ths — 2)|C(x)da. (3.4)
k=0 0

3.3 Optimal Inspection Policy
3.3.1 Optimal policy for total expected cost

We seek an optimal time 7% which minimizes the total expected cost B(T) in (3.2),
when the failure time is exponential, i.e., F((t) = 1 = e™*. Then, the total expected

cost B(T') is rewritten as

T T
¢ [1 — / (1 — e~ MT-2)) dG(JT)] + cd/ (1 — e MT=NG(2) dx
0 0

B(T) = 5 +ep (3.5)
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Qa1 (t)
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Figure 3.3: Relationship between self-detection rate d(7") and function Q1(T’).

Differentiating B(7T") with respect to T and putting it equal to zero, we have
T . T
cd/ (e — 1)G(z) dx — ci/ (e —1)dG(z) = ¢ (3.6)
0 0 »
Letting denote the left-hand side of (3.6) by @Q1(T),

@1(0) = lim (T = 0,

Q1(0) = Tlggo Q1 (T) =cq /Ooo(e’\”’— 1)G(z)dx — ¢ /Ooo(e’\m— 1) dG(z),

where d(t) = g(t)/G(t) and g(t) is a density of G, and d(¢) d¢ represents the probability
that when the system has failed, its failure will be detected during (t,t + dt) by self-
testing. We call d(t) self-detection rate. It would be practically estimated that d(t)
is decreasing. In this case, if d(T) > cq/¢; then Q1(T') decreases, and conversely, if
d(T) < cq/c; then Q1(T) increases (see Figure 3.3).

Therefore, we have the following optimal policy when d(t) is decreasing:
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(i) If @Qi1(c0) > c; then there exists a finite and unique T* (0 < T™* < oo) which
satisfies (3.6). |

(i) If @1(o0) < ¢; then T* = oo.

It is noted that if there exists a solution T to satisfy d(T) = cq4/c; then T* > T.
In particular, when G(z) = 1 — e ™ (u > A), t.e., d(t) = p, equation (3.6) is

rewritten as

1 —e~W=NT | _ =T
p— ) — -_— i' 3-7
(ca m)( = . ) c (37)

Letting
1—e (=N ] — =T

T) = —
L() /L_)\ N ’

it is strictly increasing from 0 to A\/[u(p— A)]. Therefore, we have the following optimal

policy:

(1) If Acq/u? > c; then there exists a finite unique 7% (0 < T* < oo) which satisfies
(3.7).

(ii) if Aeg/p® < ¢; then T* = co.

Furthermore, we consider the case where there exist some failures which can not
be detected by self-testing. That is, some failures, which are not in an assumed set
detected by self-testing, might occur. In the design of a complex system, it would be
difficult to design a system which can detect any failure. Therefore, it is realistic to
design a system which have priority over high detection rate at early times more than
the property to detect any failure. It is assumed that p (0 < p < 1) is probability
that the failure can be detected by self-testing. On the other hand, ¢ = 1 — p is

probability that it can not be detected by self-testing, i.e., it can be detected only
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by periodic inspection. From, the above discussions, it is reasonable to assume that
G(x) = p(1 — e™#*), and hence, the self-detection rate is given by

pue
q+pe

d(z) =

which is a decreasing function from pu to 0. If p = 1 then this model corresponds
to the case where G(x) is a standard exponential distribution, and if p = 0 then this
model corresponds to only the periodic inspection one.

In this case, equation (3.6) is rewritten by

plea - ) (

1—e W= NT ] gsT Cd, AT
- -—\€ - A,]—‘ —-1)= i .
o )+ e )= (39

Letting denote the left-hand side of (3.8) by Q2(T),

Q2(oc) = lim @Q»(T) = oo,

T—oc

Q5(T) = (e’ = 1)[(ca — pecr)e™T + gey).

Thus, if ¢q/p > ¢; then Q5(T") > 0, and hence, @»(7") increases strictly from 0 to oo.
Therefore, there exists a finite and unique 7% (0 < 7™ < oo) which satisfies (3.8).
3.3.2 Optimal policy for expected cost per unit of time

Consider the problem of minimizing the expected cost C/(T) in (3.3). In particular,

when F(t) = 1 — e~ the expected cost is

. [1 B /07'(1 B e_,\(T—m)) dG(;z:)] - (%d - c,.) (1- e‘/\T)

C(T) = Cq + T 1
/ (1-— e_’\(T_‘”))E(:L') dx + X(l - e'”v)
0
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Differentiating C(T') with respect to 7" and putting it equal to zero,
T _ - T T
(ca— )\c,.)/ (e - 1)G(z)dz — ¢ [/ (2 —1) dG(x)+/ MG (z) d
0 0

T T T
+/ AeM® dG(w)/ (1 — e M T=NG(z) da —/ AeMG (x )dx/ (1 — e AT=2)) 4G ()
0 0 0 0
Letting denote the left-hand side of Q3(7),

Qs(0) = Jim Qs(T) =
Qa(o0) = lim Qu(T)

= (ca— Ac,)/o (M~ dfv—cz{ / (e — 1) dG(x) + 2 /Ome*””dG(fv)_}7

(T) = (7 = B(T) [Cd‘cfc'—du") 1—_——]

N JF(1 = eXT) dG ()
el G(T)ci/o (1 - e [f T(1 — e-XT-9)T(z) dz _d(T)}

When the self-detection rate d(t) is decreasing, i.e., d(T) < g(z)/G(z) for 0 < z <

T, we have

JE(1 = e T=2)) dG(z)
fOT(l — e~ NT-2)\G(z) dx

> d(T). (3.11)

Thus, Q3(7") decreases at first, and after that, increases to (J3(co). Therefore, if
Q3(o0) > ¢; then there exists a finite and unique 7* (0 < T* < co) which minimizes
().

In particular, when G(z) =1 — e™#*, equation (3.10) is rewritten as

1 — e~ W=NT — e—HT A1 = e~ (=NT
(ca — Aep — pcy) ( ¢ _l-e > - ¢ (1-e )

Y . (3.12)

= A
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Further, if 1/u — oo then equation is simplified as

1 - (1 + /\T)G.—XI‘ .

(ca — Aer) 3 ¢ (3.13)

Let denote the left-hand side of (3.12) by Q4(T"). Then, we have
A
= li T) = (cq — Ay — puc;) —————,
Qs(00) = lim Qu(T) = (ca = Acr — pe ),u(/t Y
QYT = e~ ¥ N [(cqg — Aep — pci) (1 — e™*) = Aei).
Thus, Q4(T") starts from 0 and decreases for a while, and after that, increases strictly

to Q4(00) for ¢g — Aep — pe; > 0.

Therefore, we have the optimal policy:
(i) If (cqa = Aer — pe){N/[e(pe — N)]} > ¢; then there exists a finite and unique T
which satisfies (3.12).

(iv) If (cq — Aep — pe) {N/ [ = N)]} < ¢; then T* = oco.

Furthermore, we consider the case where G(z) = p(1 —e™*) (0 < p < 1). Then,

the expected cost C(T) in (3.3) is

1— r—uT -AT _ ,,_(”—’\)T . o
¢ [1—/1@( ; S #iA >}—(%\(—i—07')(1—@—'\1)

1—eHT 1A AT _ o~(u=-NT .
D ( M =+ h\ - A > + q.

O(T) =

+ ¢q.

(3.14)
Equation (3.10) is

1—e =T 1 _p=uT 29
p | (ca — Aer — uci) ( — ) —
[ = A Iz

+q [("d _AAC" (T = AT = 1) — ¢;(e"T — 1)}

- [ /\/ll;\(.l _ e—(u—/\)T) _ (eAT —1)(1- e—u’]‘):' = c;. (3.15)
p— ’
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Letting denote the left-hand side of (3.15) by Qs(T"), we have

Qs(o0) = Jim Q5(T)

1 1 /\Ci
=pllcg—Aer —pc)) | ———— ] —
Ihd l)(u—A u) #~A]

. ca—MNer+ge) ], ar (. AUpe;
-1-%1_1&(1{[ 3 }(e 1) Cd )\c,.+y’_)\ T,.

Thercfore, if ¢g — e, + g¢;) > 0 then @Q5(c0) = oo and there exists optimal T™
(0 < T* < oc) which minimizes C(T). Obviously, if M(ca — e, — pe;)/u? > ¢; then
ca — Me, + qei) > 0.

3.3.3 Optimal policy for sequential inspection '

Consider the problem of minimizing the expected cost C(T1,T5,...) in (3.4). Differ-

entiating with T} and putting it to zero, we have

Trp1 =Ty
/ (@de + EB(Ts - T
0

G
Tkl Ty =Tk -1
[ Tk~—r dr———-/ f(Ty — 2)dG(z)| (k=1,2,...).
(3.16)

7 (TA

Note that if G(2) = 1, i.e., the failure can not be detected by self-testing, then equation

(3.16) is rewritten as

I\'+1 k f (T]‘) Cd )

which agrees with the result of standard inspection policy [Barlow and Proschan

(1965)).
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In particular, when F(¢) = 1 —e™, equation (3.16) is

Tip1—Tk __ Ci
/ G(.’L‘)d.’L + —lG(T/H.l - Tk)
0 Cd

T=Tkwr Cs Tp—Tk-1
= / G (z)de — = e*dG () (k=1,2,...). (3.17)
0 Cd Jo
Then, T} = kT} (k= 1,2,...) is shown in Appendix 3.1. That is, when the failure
time has an exponential distribution, we should check the system by periodic inspection.
The reason is that when the failure time has an exponential distribution, the system
does not degrade with time and hence, it is not necessary to shorten the intervals of

inspection with time.

On the other hand, when G(z) = 1 — e ™#* equation (3.16) is rewritten as

1 T —Th-1 .
(T /0 (T — 2)pe odz — [1 — e #Ten1=To)] = T h=12..),
(3.18)
i.e.,
Thpr =T — llog ( 1 _ 1 /Tk—Tk_lf(Tk 3 m),;.e“””:t) . (3.19)
K L—pd  f(Th) Jo

To obtain 7T} (k = 1,2,...) which satisfies (3.19), we use the Barlow’s algorithm
[Barlow and Proschan (1965)] as follows:

1. Choose T3 at random.
2. Compute T3, T3, - -+ recursively from (3.18).

3. If any 6 > dj_1, reduce Ty and repeat where 6, = Tjyq — 1. If any ;. < 0,

increase T and repeat.

4. Continue until 73 < T; < --- are determined to the degree of accuracy required.
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Table 3.1: Optimal interval T* to minimize B(T') for 1/u and c4/c; when 1/\ = 3 x 105.

ca/ci
/b 100 250 | 500
20 0 (%) 00
30 o0 0 68.68
40 o0 107.71 52.21
50 [o%e) 80.77 46.70

60 | 194.11 71.33 43.86
70 | 144.80 66.32 42.12
80 | 126.44 63.17 40.93
90 | 116.27 61.01 40.07
100 | 109.73 59.42 39.42
00 77.46 48.99 34.64

3.4 Numerical Examples

We compute numerical examples for each model when F(t) = 1 — e™*. First, we cal-
culate optimal interval which minimizes the total expected cost B(T') in (3.5). Second,
we calculate optimal interval which minimizes the expected cost C(T') in (3.9) when
Ke, (z) = 1 — e™#*. Third, we calculate 7* which minimizes the expected cost C(T) in
(3.14) when G(z) = p(1 — e ). Finally, we compute the sequential scheduled times
which minimize the expected cost in (3.19) when F(t) = 1 — e *". The cost ¢4 is

normalized to ¢; as a unit cost, i.e., it is divided by ¢;.

Table 3.1 gives the optimal interval T* which minimizes the total expected cost
B(T) in (3.5), when G(2) = 1 — e *, and satisfies (3.6) for 1/u = 20, 30, 40, 50, 60,
70, 80, 90, 100, oo, and cy/c; = 100, 250, 500 when 1/\ = 3 x 10°. This indicates
that optimal interval T* decreases when 1/4 increases, and tends to a fixed value as
1/p or cq/c; goes to infinity, which is a solution of (3.13). From the optimal policy, if

1/p < y/¢if/(Acq) then T* = oo. For example, when ¢4/c; = 100, if 1/ < /3,000 then
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Table 3.2: Optimal interval T* to minimize C(T) for 1/u and cq/c; when G(z) =
1 —e™=

ca/ci
1 [~700 | 250 | 500,
20 o0 s} e's)
30 o0 0 68.69
40 00 107.75 52.21
50 00 80.79 46.71

60 | 194.32 71.34 43.87
70 | 144.89 66.33 42.12
80 | 126.50. | 63.18 40.93
90 | 116.34 | 61.02 40.07
100 | 109.78 59.43 39.42
00 77.48 49.00 34.64

T* = oo. This shows that if a failure is detected early and surely by self-testing, then

it is not necessary to perform periodic inspection.

Table 3.2 gives the optimal interval 7* which minimizes the expected cost C(T') in
(3.9) when G(z) = 1—e™#*, and sa‘tisﬁes (3.12) for 1/u = 20, 30, 40, 50, ’60, 70, 80, 90,
100, oo, and ¢q/c; = 100, 250, 500 when 1/A = 3 x 1j05, c/c; = 104 From‘ the optimal
policy, if 1/u < 2/[=A + /A2 + 4X\(cq — Ac,)/ci] then T* = co. Optimal interval T* in
Table 3.2 tends to be a little greater than that in Table 3.1.

Table 3.3 shows the optimal interval T7* which minimizes the expected cost C(T)
when G(z) = p(1 — e™*), and satisfies (3.15) for 1/u = 20, 30, 40, 50, 60, 70, 80, 90,
100 and p = 0.9, 0.5, 0.2, 0.0 when 1/A = 3 x 10%, c4/c; = 100 and ¢, /¢; = 10%. For
example, if 1/p = 40 and p = 0.5 then 7% = 98.72. This indicates that T* decreases
as p decreases from 1 to 0. where note that if p = 0 then the system can not detect its

failure by self-testing.

Table 3.4 shows the optimal inspection time which minimizes the expected cost
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Table 3.3: Optimal interval 7% to minimize C(T") for 1/p and p when G(z) = p(1—e™#%)

and cq/c; = 100.

- .
1w 09 05 | 02 | 00
20 | 229.82 | 105.98 | 85.55 | 77.48
30 | 200.62 | 102.31 | 84.59 | 77.48
40 | 181.48 | 98.72 | 83.72 | 77.48
50 | 153.43 | 95.68 | 82.98 | 77.43
60 | 133.49 | 93.24 | 82.38 | 77.48
70 | 120.87 | 91.20 | 81.88 | 77.48
80 | 112.65 | 89.73 | 81.47 | 77.48
90 | 106.98 | 88.47 | 81.12 | 77.48
100 | 102.85 | 87.43 | 80.83 | 77.48

Table 3.4: Optimal times T} — Ty (k= 1,2,...,12) for m to minimize C(T3, Ts,..

when G(z) =1 —e7#®, F(t) =1 —e ™" and ¢4/c; = 100.

m

k770 [ 15 | 20

1 [ 109.78 | 40.90 | 23.08
2 [ 109.78 | 2651 | 11.32
3 [ 109.78 | 23.48 | 9.40
4 [ 109.78 | 21.78 | 8.36
5 | 109.78 | 20.61 | 7.68
6 | 109.78 | 19.74 | 717
7 | 109.78 | 19.05 | 6.78
8 [ 100.78 | 18.47 | 6.46
9 [ 109.78 [ 18.00 | 6.20
10 | 109.78 | 17.57 | 5.97
11| 109.78 | 17.21 | 5.7
12 [ 109.78 | 16.88 | 5.60

)
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C(Ty,T3,...) in (3.18) when F(t) = 1 — e " for m = 1, 1.5, 2 when 1/\ = 3 x 10°
and ¢4/c; = 100. For example, when m = 1.5 then the system is checked with intervals
40.90, 26.51, 23.48, and so on. This indicates that 7} decreases as m increases. When

m = 1.0, these are equal to the result of periodic inspection.

3.5 Conclusions

We have proposed the optimal testing policies for a system with self-testing: Using
the theory of inspection policy in reliability, we have deriyed the total expected cost
until the detection of failure and the expected cost per unit of time, and discussed
analytically the optimal inspection policies which minimize them. It has been shown
that the self-detection rate plays an important role for deriving optimal policies. For
designing a good performance of the system, it would be necessary to increase the

self-detection rate by improving the property of self-testing.



APPENDIX 3.1

Appendix 3.1

Prove that T} = KTy (k=1,2,...) in equation (3.17)

Let T} be a solution to satisfy

T) _ Ci— T _ c: T
Glo)de + ST(T) = / & C)de - & [ edG ().
0 Cd 0 Cd Jo \
Further, when k£ =1 in (3.17),
T_)_-—Tl . Ci — T1 _ Cs Tl .
/ G(z)dax + —=G(To —T)) = / G (z)de — = e G(Th).
0 Cd 0 Cd Jo

Thus, we have

T

=N __ Ci—= — Ci—
/ Ga)de + =G(Ty —T)) = G(z)dz + =G(Ty),
0 Cq Cd

0
and hence, Ty = 277,

Similarly, it can be easily proved that T} = KTy (k= 1,2,...).






Chapter 4

Optimal Maintenance and
Inspection Policies for a Finite
Interval

This chapter considers optimal policies for maintenance and inspection models for a
finite interval. It would be important to consider practically some maintenance policies
for a finite span, because the working times of most units are finite in actual fields.
We convert the usual replacement models to maintenance models for a finite interval,
and derive optimal policies for each model, using the partition method. Further, we
show how to compute numerically optimal checking times of a finite inspection model.

Numerical ezamples are given for each model.

4.1 Introduction

This chapter considers optimal policies for maintenance and inspection models where
a unit has to operate for a finite interval. Practically, the working times of most units
are finite in actual fields.

There have little papers treated with replacements for a finite time span. Barlow

and Proschan (1965) derived the optimal sequential policy for age replacement for a

47
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T 2T 3T (n—=1)T  nT

Figure 4.1: Finite time S with n periodic intervals.
finite interval. Christer (1978) and Ansell et al. (1984) gave the asymptotic costs of
age replacement for a finite interval. N ékagawa et al. (2004) considered the inspebtion
model for a finite working time and gave the opﬁimal pbliéy,.})y partitioning the working
time into equal parts.

This chapter proposes modified replacement policies which convert three usual
models of periodic replacement with minimal repair, block replacement and simple
replacement to replacements of units for a finite interval. The optimal policies of three
replacements are analytically derived by using the partition method in Nakagawa et
al. (2004). Further, it is shown that all equations of three replacements are written
on general forms. Next, we consider the sequential inspection policy in which a unit

is checked at successive times for a finite interval, and show how to compute optimal

checking times numerically.

4.2 Replacement Policies

We suppose that a unit has to be operating for a finite interval [0, S], i.e., its working
time is given by a specified value S. To maintain the unit, an interval S is partitioned
equally into n parts in which it is replaced at periodic times k7" (k = 1,2,...,n) (see
Figure 4.1), where nT = S. Then, we consider the replacement with minimal repair
at failure, the block replacement and the simple replacement [Nal,{aga.wa pp. 367-395

(2003)].
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4.2.1 Periodic replacement with minimal repair
We consider the model where a unit is replaced with minimal repair as follows:
(i) The unit is replaced at periodic times kT (k = 1,2,...,n) and any unit is as
good as new with each replacement. When the unit fails between replacements,
only minimal repair is made, and hence, its failure rate remains undisturbed by

any repair of failures. It is assumed that the repair and replacement times are

negligible.

(ii) Suppose that the failure times of each unit are independent, and have identical
density f(t) and distribution F'(¢). Then, the failure rate or the hazard rate is
r(t) = f(t)/[1 — F(t)] and its cumulative hazard rate is H(t) = fot r(u) du, i.e.,
F(t)=1-F(t) = e H®,

(ili) A cost ¢y, is the cost of minimal repair, and c, is the cost of scheduled replacement.
Then, the expected cost of one interval (0,7 is, from Barlow and Proschan (1965),

C()=cnH(T) + ¢, = cmH(—g) + ¢p. (4.1)

Thus, the total expected cost until time S is
~ S
C(n)=nC(l)=n cmH(E) +¢p (n=1,2,...). (4.2)
We find an optimal partition number n* which minimizes C(n) in (4.2). Evidently,

C(1) = cnH(S) + ¢y,

C(oo) = lim C(n) = co.

n—oo
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Hence, there exists a finite number n* (1 < n* < co) which minimizes C(n). Forming
- the inequality C(n + 1) — C(n) > 0, we have

! > (p=1,2,...). (4.3)
nH(%) —(n—l—l)H(nf_l) K

When the failure time has a Weibull distribution, i.e., H(t) = M™ (m > 1), equa-

tion (4.3) becomes

: ! . >Xm gm =12, (4.4)

C
nm—-l - (TL + 1)m-—1 P

Since it is easily proved that [1/z]*—[1/(z+1)]® is strictly decreasingin @ forl < z < oo
and a-> 0, the left-hand side of (4.4) is strictly increasing in n to co. Thus, there exists
a finite and unique minimum n* (1 < n* < co) which satisfies (4.4). In particular, when

m =2, i.e., H(t) = M\?, equation (4.4) is

I’I(TZ + 1) )‘Cm 2 »
> . =1,2,... 4.5
RS (=12, (45)
which agrees with the type of inequality (4.3) in Nakagawa et al. (2004).
To obtain an optimal n*, putting that 7' = S/n, equation (4.2) is

emH(T) + cp]

7 (4.6)

mﬂ:s[

Thus, the problem which minimizes C(7") corresponds to the problem of the standard
replacement with minimal repair for an infinite interval. Many discussions on such
optimal policies have been made [Nakagawa (1979, 1981), Valdez-Flores and Feldman

(1989)]: Differentiating C(T") with respect to 7" and setting it equal to zero, we have

AV@%MM&:ﬁ. (4.7)

C’m
When the failure rate is strictly increasing, a solution 7" to (4.7) is unique if it exists.

Therefore, we have the following optimal policy [Nakagawa et al. (2004)]:
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(i) If T < S then we put that [S/T] = n and calculate C(n) and C(n+ 1) from (4.2),

where [z] denotes the greatest integer in z. If C(n) < C(n+1) then n* = n, and

conversely, if C(n) > C(n + 1) then n* =n + 1.

(i) If T > S then n* = 1.

4.2.2 Block replacement

Suppose that a unit is always replaced at any failure between replacements. This is
called block replacement and has been studied by many authors [Nakagawa (1989),
and Gertsbakh (2003)].

We define the block replacement model for a finite interval.

(i) The unit is replaced at periodic times kT (k = 1,2,...) or any failure between
replacements. After that, any unit is as good as new by each replacement. It is

assumed that the replacement times are negligible.

(i) Let M (t) be the renewal function of distribution F(t), i.e., M(t) = 3320 | F(¢),
where F(™(t) is the n-th Stieltjes convolution of F(t), and F(™(t) = fg FO=D(t—
w)dF(u) (n =1,2,...) and FO(t) = 1 for t > 0, 0 for ¢ < 0. That is, M(t)

represents the expected number of failed units during (0, ¢].

(iii) A cost ¢y is the cost of replacement for a failed unit, and ¢, is the cost of scheduled

replacement.
Then, the expected cost of one interval (0, 7] is, from Barlow and Proschan (1965) ,
C(1) = ¢;M(T) + ¢, = cfﬂrf(i—T) + ¢p. (4.8)
Thus, the total expected cost until time S is

C(n) =nC(1) =n [cfl\f(%) + cp] (n=12,...). (4.9)
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From the inequality C'(n + 1) — C(n) > 0, we have

1 >c_f

nM(%)—{n+lﬂu(nil)_;%

(n=1,2,...), (4.10)

and putting that 7' = S/n in (4.9),

() =S {M] ,

- (4.11)

which corresponds to the standard block replacement. Let m(t) be a renewal density
of F, i.e., m(t) = M'(t). Then, differentiating C(T) with respect to T" and setting it

equal to zero, we have

Cp

T
/0 [m(T) — m(t)] dt = —=. _ (4.12)

cr
Therefore, by obtaining 7" which satisfies (4.12) and applying it to the optimal

policy, we can get an optimal replacement number n* which minimizes C'(n) in (4.9).

4.2.3 Simple replacement

Suppose that failures of a unit are replaced only at times kT (k = 1,2,...,n), which

is called Policy II in Nakagawa (1979) . This model is defined as follows:

(i) The unit is replaced only at periodic times kT (k = 1,2,...n), where n = S/T.
If the unit fails before the next replacement, its failure remains until the next

replacement.

(i) The failure time has a general distribution F'(¢) with finite mean 1/)\, where

F(t)=1-F(t).

(iii) A cost ¢q is the cost per unit of time for the time elapsed between a failure and

its detection, and ¢, is the cost of scheduled replacement.
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Then, the expected cost of one interval (0, 7] is, from Nakagawa (1979) ,

- T S/n
Cc(l) = cd/ F(t)dt + ¢, = ca F(t)dt + cp. (4.13)
0 0
Thus, the total expected cost until time S is
B S/n
C(n)=nC(l)=n cd/ F(t)dt+ c, (n=1,2,...). (4.14)
0

Evidently, since

Cl1) = cq /OS F(t)dt +c,,

C(o0) = lim C(n) = oo,

n—c0
there exists a finite n* (1 < n* < co) which minimizes C(n). Forming the inequality
C(n+1) — C(n) > 0 implies

1 Cd

S/n S/(n+1) 2 c_p
'n./ F(t)dt — (n+ 1)/ F(t)dt
0 0

In particular, when F(t) = 1 — e~ equation (4.15) is

(n=12...). (415

1 /\Cd
ne= S/ — (n + 1)e-2S/(n+1) = '5;‘

(n=1,2,...). (4.16)

Using the approximation of e™® &~ 1 —a + a?/2 for small a, equation (4.16) is rewritten

as

n(n+1) ACd AS\?
> = =1,2,... 4.17
2 T ot e (2) (n=12..) (4.17)

which agrees with the type of inequality (4.3) in Nakagawa et al. (2004).

Putting that 7' = S/n, equation (4.14) is

C(T) = [cdfOTFT dt+cp} .

(4.18)
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Differentiating C(7T") with respect to T" and setting it equal to zero, we have

' / R(T) - P dt = . (4.19)
0 Cd

Noting that the left-hand side of (4.19) is strictly.increa.sing from 0 to 1/, there exists
a finite and unique 7" which satisfies (4.19), if 1/ > ¢p/ca. Therefore, using the optinuﬂ
policy, we can get an optimal replacement number n* which minimizes C'(n) in (4.14).

In general, the above results of three replacements are summarized a.é follows: The

total expected cost until time S is

~

C(n) =n {cjé (3) + c,,] (n=12...), (4.20)

where ®(t) is H(t), M(t) and fot F(u)du, and ¢; is ¢y, ¢f and ¢4 for the respective
periodic, block and simple replacements. Forming the inequality C'(n+ 1) — C(n) > 0

yields

1 .
>4 m=1,2..) (4.21)

h(I)(i—T) — (n+1)®(——g——> G

n+1

Putting that 7' = S/n in (4.20), we have

c(T)=S8 [%] ) (4.22)
and differentiating C(T') with respect to T and setting it equal td ZeTO,
TO'(T) — &(T) = 2. (4.23)

¢

If there exists a solution 7" to (4.23), then we can get an optimal number n* for each

replacement, using the optimal policy.
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Tn—l Tn

Figure 4.2: Finite interval S with n sequential intervals.

4.3 Inspection Policy

Nakagawa et al. (2004) have considered the periodic inspection model for a finite
interval (0,S]. In this section, we extend this model to a sequential inspection policy

as follows:
(i) An operating unit is checked at successive times 0 < Ty <Th < -+ < T, (see
Figure 4.2), where 7o =0 and 75, = S.
(ii) The failure time has a general distribution F'(¢) with finite mean 1/X, where
Fit)=1-F(@).
(i) A cost ¢; is the cost of one check and ¢y is the cost per unit of time for the time
elapsed between a failure and its detection at the next check.

Then, the total expected cost until the detection of failure or time S is

n=l 2Ty
C(n) = Z / [ci(k + 1) + ca(Tis1 — H)]dF(t) + cinF(S) (n=1,2,...).

k=0 Tk
(4.24)
Putting that 0C/0T}, = 0, we have
Tk+1—T/;= F(Tl.t)_F(Tk—l) ____ci (k=1,2,...,n—1),' (425)

f(Th) cd
and the resulting expected cost is

n—1

s
C(n) + cq /O Fydt =Y [ei+ca(Topr = TIF () (n=1,2,...).  (4.20)

k=0



56 CHAPTER 4. FINITE-INTERVAL

For example, when n = 3, the checking times T} and 75 are given by the solutions
of equations

_F(L)-F(T) ¢

S-h= f(T2) el
_ F(Tl) _ &
N T

and the total expected cost is

S
C(3) + Cd/o F(f) dt = ¢; + cgT1 + [Ci + Cd(T2 - Tl)]F(Tl) + [Ci + Cd(S — TQ)]F(TQ)

Therefore, we compute optimal T} (k = 1,2,...,n — 1) which satisfies (4.25), and
substituting them into (4.26), we obtain the total expected cost C(n). Next, comparing
C(n) for all n > 1, we can get an optimal checking number n* and checking times T}

(k=1,2,...,1%).

4.4 Numerical Examples

We compute numerically optimal policies for each model. Table 4.1 shows optimal n*
for periodic replacement with minimal repair for 1/\ = 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, and ¢, = 5, 6, 7, 8, 9, 10, 15, 20, 25 when S = 100, ¢,, = L and F(t) = 1—e= M,
This indicates that n* decreases as 1/ or ¢, increases.

able 4.2 shows optimal n* for block replacement for 1/ = 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, and ¢, = 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2 when S = 100,

¢y =1 and F(t) is a gamma distribution with parameter 2, i.e.,

m(t) = 2 1\'6—2’\{, Mit)=—=—->- le :
2 2 4

Table 4.3 shows optimal n* for simple replacement for 1/A =10, 20, 30, 40, 50, 60,
70, 80, 90, 100, and ¢, = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 4, 6 when S = 100, ¢4 = 1 and
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Table 4.1: Optimal n* for periodic replacement with minimal repair when S = 100,
¢m=1and F(t) =1— e,

Cp

/A5 6 7 8 9 10 15 20 25
10 (14 13 12 11 11 10 8 7 6
20110 9 8 8 7 7 6 5 4
308 7 7T 6 6 6 5 4 4
40 (7 6 6 6 5 5 4 4 3
50 ({6 6 5 5 5 4 4 3 3
60 |6 5 5 5 4 4 3 3 3
7015 5 5 4 4 4 3 3 2
80 |5 5 4 4 4 4 3 3 2
99 (5 4 4 4 4 3 3 2 2
00,4 4 4 4 3 3 3 2 2

Table 4.2: Optimal n* for block replacement when S = 100, ¢y = 1 and F'(t) is gamma
with parameter 2.

Cp :
1/A]0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10 | 28 21 17 15 12 11 9 8 7
20 14 11 9 7 6 5 ) 4 3
30 9 7 6 ) 4 4 3 3 2
40 7 ) 4 4 3 3 2 2 2
50 ) 4 3 3 2 2 2 2 1
60 4 4 3 2 2 2 2 1 1
70 4 3 3 2 2 2 1 1 0
80 4 3 2 2 2 1 1 0 0
90 3 2 2 2 1 1 1 0 0
100 | 3 2 2 1 1 1 0 0 0
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Table 4.3: Optimal n* for siniple replacement when S = 100, ¢ = 1 and F(t) = 1—e™.

. Cp
1/A[05 06 07 08 09 1 2 4 6
10 [28 25 23 21 20 19 12 7 5
20 |21 19 17 16 15 14 9 6 5
30 |17 16 14 13 12 12 8 5 4
40 |15 14 13 12 11 10 7 5 4
50 | 13 12 11 11 10 9 6 4 3
60 |12 11 10 10 9 9 6 4 3
70 |11 10 10 9 8 8 6 4 3
80 |11 10 9 8 8 7 5 4 3
90|10 9 9 8 7 7 5 33
wojw0 9 8 8 7 7 5 3 3

Table 4.4: Checking times T} and expected cost é(n) = C(n)/cq + fos F(t)dt when
S =100, ¢;/cg =2 and F(t) = 1 — e,

n | 1 2 3 4 5 6 7 8 09
T, | 100 641 509 441 403 331 36.8 363 36.1
T, 100 771 66.0 50.8 562 543 533 531
T 100 840 754 705 678 66.6 66.3
T 100 886 823 789 773 T7.0
Ty 100 921 87.9. 859 855
Ts 100 949 925 92,0
T 100 972  96.6
Ty 100 99.3
Ty 100
C(n) [ 1020 93.44 90152 9116 9147 92.11 9291 93.79 94.70
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F(t) = 1 — e~ This shows similar results with Tables 4.1 and 4.2, i.e., n* decreases
as 1/ or ¢, increases.

Table 4.4 gives the checking time 7}, (k = 1,2,...,n) and the expected cost (~3(n) =
C(n)/cqa + fOS F(t)dt when S = 100, ¢;/cg = 2 and F(t) = 1 — e, In this case, we
set that the mean failure time is equal to S, i.e.,

& 2 1 [/«
—At?
dt ==4/—=S.
/Oe 5\ % S

Comparing C(n) forn=1,2,...,9, the expected cost is minimum at n = 4. That is,

the optimal checking number is n* = 4 and checking times are 44.1, 66.0, 84.0, 100.

4.5 Conclusions

We have derived optimal policies for periodic, block and simple replacement for a finite
interval, using the known results of standard replacements and the partition method.
Further, we have shown the computing method qf obtaining optimal sequential times
of an inspection model. Such computations might be more troublesome than those of
an infinite case. But, it would be easy to compute optimal times numerically even by
personal computers, as they have greatly developed.

In this chapter, we have made no mention of age replacement. We can obtain an
optimal age repla.éement policy for a finite interval by the similar method as follows:
We divide a whole working time S into n equal parts, i.e., nT = S, and derive an
optimal replacement time for one interval (0,7]. Further, by the partition method,
we determine an optimal replacement number n*. If a unit is replaced at time T
(0 < To < T) then we may reconsider the same replacement policy for the remaining

interval S — Tp.






Chapter 5

Optimal Policies for a System with
Two Types of Inspection

This chapter considers optimal inspection policies for a system wz't_h two types of in-
spection: Type-1 inspection is done so frequently more than type-2 inspection, because
the loss cost for one check of type-1 inspection is lower than that of type-2 inspection.
On the other hand, there exist some failures which can not be detected by type-1 in-
spection and can be detected only by type-2 inspection. Optimal inspection policies for
such a system are considered. Optimal numbers which minimize the expected costs are
d?l,alytically derived. Numerical examples are given when the failure time distribution

is exponential.

5.1 Introduction

This chapter considers a system which is checked periodically by type-1 inspection
or type-2 inspection. Suppose that the cost of type-1 inspection is lower than that
of type-2 inspection. Therefore, type-1 inspection checks the system more frequently
than type-2 inspection. On the other hand, it is assumed that type-2 inspection can

detect any failure which can not be detected by type-1 inspection.
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X O failure which can be detected
O by Type-1 inspection

X ~fail‘ure which can not be
O . - detected by Type-1 inspection

Figure 5.1: System with two types of inspection.

A typical example of such a inspection policy in real systems is electronic control
devices which are periodically checked by self-diagnosis. The self-diagnosis function of
the system is embedded in électric circuits, and check it periodically [O’Connor (2001),
Jha and Gupta (2003)]. On the other hand, the system complexity has dramatically
increased, and as a result, it has been difficult to design the self-diagnosis which can
detect all possible failures. Moreover, the cost performance of self-diagnosis increases
as the coverage to detect failures increases. The external inspection with tester has a
complex implement and its cost is high. Therefore, the inspection should be classified
into two cases that the high-cost inspection and low-cost self-diagnosis, where intervals
of high-cost inspection would be larger than those of low—cos£ self—diagﬁosis. Two types
of inspection policies for storage systems were studied by Kodo, Nakagawa and Nishi
(1995).

“The inspection policy in reliability theory is applied to such a model: Type-1 in-
spection checks a system at periodic times j7T (j = 1,2,...), and the type-2 inspection

checks a system at periodic time AmT (k = 1,2,...). When the system fails, its failure
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is classified with a probability, i.e., the failure can be detected by type-1 inspection
with probability p. On the other hand, some failures can not be detected by type-1
inspection with probability 1 — p (see Figure 5.1).

Consider the time from the beginning of system operation to the detection of failure
as one cycle, and further, introduce a loss cost for the time elapsed between a failure
and its detection. Then, the mean time and the total expected cost of one cycle, and
the expected cost per unit of time are derived. Optimal numbers m* which minimize
the expected costs are analytically derived. Finally, numerical examples are given when

the failure time distribution is exponential.

5.2 Model and Assumptions

Consider a system which is checked periodically by two-types of inspection: Type-1
inspection is done so frequently more than type-2 inspection, because the loss cost for
one check of type-1 inspection is lower than that of type-2 inspection. Whereas, there
exist some failures which can not be detected by type-1 inspection.

For this model, we define the following assumptions:

(i) The system is checked by two types of inspection; type-1 or type-2 inspection.
The system is replaced when its failure is detected by inspection. Any failure
does not occur between the first failure and the next inspection. If the failure is

detected then the system is maintained and is as good as new.

(ii) The system is checked periodically by two types of inspeétion: Type-1 inspec-
tion is performed at periodic times jT' (j = 1,2,...) and type-2 inspection is
performed at periodic times kmT (k = 1,2,...) for some specified 7" and m
(m=1,2,...), i.e., type-2 inspection is done at every m times of type-1 inspec-

tion.
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(i) The failure time distribution has a general distribution F(¢) with finite mean

1/), where F(t) =1 — F(t).

(iv) When the system fails, its failure is classified in the following way: The failure
can be detected by type-1 inspection and type-2 inspection with probability p
(0 < p £ 1). On the other hand, the failure can not be detected by type-1
inspection vwith probability 1 — p, and can be detected only by type-2 inspection.

In other words, type-2 inspection can detect any failure.

(v) Let ¢;; be the cost of one check by type-1 inspection, ¢;» be the cost of one check
by type-2 inspection, that is, the inspection cost at time kmT includes two costs
of the type-1 inspection and type-2 inspection. Further, let ¢y be the loss cost

per unit of time for the time elapsed between a failure and its detection.

Figure 5.2 shows the processes of the system with two types of inspection: The
horizontal axis represents the process of time. Upper side shows that when the system
fails at time ¢ (kmT + jT < t < kmT + (j + 1)T), its failure is detected by type-1
inspection at time kmT + (j + 1)T with probability p, and the lower side shows that
the failure is detected only by type-2 inspection at time (k + 1)mT with probability
l-p

We define one cycle as the time from the beginning of system operation to the

detection of failure. Then, the mean time of one cycle is given by

x m L akmT+(G+1)T % a(k+1)mT
Alm;T) = / [kmT + (j+1)T)dF(t) + (1 — ]))Z/ (k+1)ymT dF(t)
A =0 j=0 kmT+3T =0 kmT
= pI ZF kT) + (1 — p)ymT ZF (kmT)  (m=1,2,...). (5.1)

k=0 k=0
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p Ci2 Ci2
Ci1 Ci1  Ci1 Ci1 Ci1 Ci1 Ci1 Cin Cd
I—I—'-l-————l—D——-I————-I———D-—I--——-I——I%I
t
0 T 2T mT 2mT EmT
| +3T o
1—p 12
Cd Ci1
l—l—I-————l—ﬂ—.—————l——-D————-—l-----———l—X—-—---;-l—-ﬂ
t
0 T 2T mT 2mT kmT (k+1)mT
+5T -

= Type-1 inspection D Type-2 inspection X failure

Figure 5.2: Two types of inspection.

Further, the total expected cost of one cycle is

o0 m—1 AmT+(G+1)T

B(m; T) PZ / {cir(km~+7+1) + ciok+calkmT+(j+1)T—t]} dF(t)
k=0 j=0 kmT+jT

(k+1)mT
+(1-p) Z/ ((cam + co)(k + 1) + cal(k + )mT — 8]} dF (2)

oo o0 - [o.o] Cd
1 T 1 - T i2 k' T — 0 — ——.
= (cii+cdD)|p go (kT) + ( Z F(km ]—i—c Z mT) — peip 3
A (5.2)
Thus, the expected cost C(m;T) per unit of time is, from (5.1) and (5.2),
Y R —_ B(m’jv)
Clm;T) = A T)
o0 o OO ) Cd
Ci1 Z Z ka] + ¢io Z (kmT) ] -3
}: )mz-ﬁ(ka) T
k= k=0

+ e (m=1,2,...). | (5.3)
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5.3 Optimal Policy 1

Assume that the failure distribution is exponential, i.e., F(t) = 1 — e™*. Then, the

total expected cost B(m;T) in (5.2) can be rewritten as

4 % 1—pm cio Cq
B(m;T) = (ca+cdT) g + i——e—'\)mT} +1_6_/\mT — peip — X‘ (m=1,2,...),

and the expected cost C(m;T) in (5.3) is

C(m;T) = cq+—=+

Ci1 Cio — ( L TCd + ]9012) (1 — 6_’\mT) 1:—
T (1-p)m(l - e‘*T) +p(1 — e=AmT)

We seek an optimal number m} of type-2 inspection which minimizes the total
expected cost B(m;T) in (5.4) for a fixed T > 0. Letting B(m + 1;T) > B(m; T), we

have

; - (1 - P)(Cln +cqT)’ (5.6)

It is easily seen that the left-hand side of (5.6) is strictly increasing in m from e*” —1 to
0o. Thus, there exists a finite and unique minimum mj (1 < m} < oo) which satisfies
(5.6).

In particular, since e™T —1 > AET, if there exists a minimum solution 7 to satisfy
the following inequality:

_ m(m —l— l) ci
Z’” = N1 = )(QC“ T eal) (57)

then mj < mMmy. It is further noted from (5.6) that optimal m} is decreasing with both

of 1l —pand T, and m} — oo as p — 1.
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5.4 Optimal Policy 2

It is assumed that cg/A > ¢, i.e., the downtime cost for the mean failure time is
greater than the additional cost for one check of type-2 inspection. Then, we seek an
optimal number m} which minimizes the total expected cost C(m;T) in (5.5). Letting
Cim+1,T) > C(m;T), we have

Z(e)\kT _ 1)

m
k=1 > Ci2 . (5.8)

(1-p) |5 - (1= p)ee]

m(l —p) + r_—e‘:—ﬁ

Letting denote the left-side hand of (5.8) by L(m),

1—p+—1_e_AT

L(c0) = o0,

o, Mm+1)T KT eMmtT 1
(1=p) Y (XD — MT) 4 ———
k=1

L(m+1)—L(m) = > 0.

(1 =5) + Tz o+ D0 =) + T

Thus, L(m) is strictly increasing from L(1) to oo, and hence, there exists a finite and

unique minimum m} (1 < m$ < co) which satisfies (5.8).

Since e?T — 1 > MkT, if there exists a minimum solution to satisfy the following
inequality:
m
>
»— C-
k=1 2 12 , (59)

m(1l—p)+ le AT(1-p) [% -(1- p)ci2]

then mj < mq. It is further noted that optimal mj has no relation with c;;, and is

decreasing with both of 1 —p and T, and mj5 — oo as p — 1.
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5.5 Numerical Examples

We compute numerically optimal inspection numbers m] and m3 which minimize the
expected costs B(m;T) and C(m; T) when F(t) = 1 — e~ respectively, and compare
mi with 7; and m3 with .. All costs are normalized to ¢;; as a unit cost, i.e., they
are divided by ¢;;.

Table 5.1 presents the optimal number m} which minimizes B(m;T) and its upper
bound 777; for 1/(AT') = 300, 600, ¢sT"/c;y = 100, 1000 and ¢pn/ci; = 1, 2, 5, 10, 15, 20,
25, 30 when p = 0.9. This indicates that m} increases as c;2/c;; or 1/(AT) increases and
cdT/ciy decreases. For example, when the interval of type-1 inspectiou is T = 1 day,
1/X\ = 300, cq/ci; = 100 and p = 0.9, type-2 inspection should be performed almost
every month for ¢;5/ci1 = 15.

Table 5.2 shows the optimal number mj} which minimizes B(m;T) and mm; for
1/(AT) = 300, 600, ¢4T/c;; = 100, 1000 and p = 0.5, 0.7, 0.8, 0.9, 1.0 when ¢;2/c;1 = 10.
This indicates that the optimal m} decreases with 1 —p. Thus, if 1 —p is large, it would
be better to perform type-2 inspection early. When p = 1.0, type-2 inspection should
not be performed, because all failures are detected by type-1 inspection with low-cost.

Table 5.3 gives the optimal number m§ which minimizes C'(m;T) and its upper
bound i, for 1/(AT) = 300, 600, c4T"/c;; = 100, 1000 and ¢io/cin = 1, 2, 5, 10, 15, 20,
25, 30 when p = 0.9. This indicates that m3 is a little larger than m7 in Table 5.1.

Table 5.4 presents the optimal number m3 which minimizes C(m;T) and 7, for
1/(AT) = 300, 600, c4T/ciy = 100, 1000 and p = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 when
cio/cin = 10. For example, when the interval of type-1 inspection is 7' = 1 day,
1/A = 600 and c¢q/c;; = 100, type-2 inspection should be performed almost every 34
days for p = 0.9 and every 16 days for p = 0.5.

It is of interest that the upper bounds 7; (i = 1,2) give close approximations to
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Table 5.1: Optimal number m} to minimize B(m;T) for 1/(AT), ¢ia/ci1 and cqT'/en
when p = 0.9.

1/(A\T) =300 | 1/(AT)=600

s cal'/can
-cl~_1 100 1000 100 1000

l mi; My |m] ™y |m] ™y |mi Ty

1 8 8 2 2 111 11| 3 3
2 111 11 3 3116 15| 5 )
5 |17 17| 5 5 |24 24| 8 8
10 |24 24| 8 8 |34 34|11 11
15129 30| 9 9 |42 42|13 13
20134 34|11 11|48 49|15 15
25 138 39|12 12|54 55|17 17,

30 |41 42|13 13|59 60|19 19

Table 5.2: Optimal number mj} to minimize B(m;T) for 1/(AT), p and ¢4T'/c;y when
Ci‘g/Cil = 10.

1/(AT) =300 | 1/(AT) =600
CdT/Cil

P 100 1000 100 1000
m’{ My m’{ m1 ’I’)’l’i< my m‘{ ms
0511 11| 3 3 116 16| 5 5
06|12 12| 4 4 |17 17| 5 5
07|14 14| 4 4 120 201 6 6
08117 17| 5 5124 24| 8 8
0924 24| 8 8 |34 34|11 11
10l o0 0|0 | oo|oo oo
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Table 5.3: Optimal number m} to minimize C(m;T) for 1/(AT), cio/cin and cqT'/ciy
when p = 0.9.

1/(AT) =300 | 1/(AT) =600
cal'/cin

5;2 100 1000 100 1000
" mi Ma | my Mo |ms Mo | my s
118 812 3|11 11|23 4
2111 113 4|15 16| 5 5
5117 175 6|24 25| 8 8
1024 248 8|34 35|11 11
15030 30| 9 10|42 43|13 13
20 |34 35|11 11|49 49|15 16
95 |38 39|12 12|54 55|17 17
30 | 42 43 |13 13|59 60 | 19 19

Table 5.4: Optimal number mj to minimize C(m;T) for 1/(A\T), p, and ¢4T'/c;i when
cio/cip = 10,

1/(A\T) = 300 | 1/(AT) = 600
CdT/Cil

p | - 100 1000 100 1000
Imi Mo | my Mo | my Mo | my Mo
05|11 11| 4 4116 16| 5 5
06|12 12| 4 4 {17 17| 6 6
07114 14| 5 5120 20| 6 6
08|17 17| 5 6 |24 25| 8 8
0924 25| 8 8§ 134 35|11 11
10 oc oo o000 00| o0 o0
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Figure 5.4: Expected cost C(m;T).
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optimal numbers in all tables.

Figure 5.3 draws the total expected cost B(m;T) for p = 0.8, 0.9 when 1/(A\T) =
300, cio/cin = 10, ¢qT'/ciy = 100. For example, when p = 0.9, the optimai number is
m* = 24 and B(m*;T) = 589.3. This indicates that B(m;T) decreases with p. Thus,
to decrease the expected cost, we have to increase the probability p of detecting failures
by type-1 inspection.

Figure 5.4 draws the expected cost C(m;T) for p = 0.8, 0.9 when 1/(A\T") = 300,
cio/ci1 = 10, ¢qT'/cin = 100. For example, when p = 0.9, the optimal number is m* = 24

and C'(m*;T) = 1.95. This also shows the same tendency as Figure 5.3.

5.6 Conclusions

We have proposed the optimal inspection policies for a system with two types of in-
spection. There might exist some failures in many actual systems which can not be
detected by type-1 inspection and can be detected only by type-2 inspection. This
assumption would be realistic, and the model is also simple. Further, it is easy to
understand the results obtained and techniques used in this paper.

Using the inspection policy in reliability theory, we have derived the total expected
cost until the detection of failure and the expected cost per unit of time. We have dis-
cussed analytically the optimal inspection policies which minimize the expected costs.
We have given numerical examples when the failure time distribution is exponential.
These formulations and results would be applied to other real systems such as digital

circuits by suitable modifications.



Chapter 6

ki

Optimal Replacement Policy for
a System with Two Types of
Inspection

This chapter considers a replacement policy for the same system with tﬁ)o types of
inspection in Chapter 5: Type-1 inspection is done so frequently more than type-2
inspection, because the loss cost for one check of type-1 inspection is lower than that
of type-2 inspection. On the other hand, there exist some failures which can not be
detected and can be detected only by type-2 inspection. Further, the system s replaced
at the specified N -th type-2 inspection. The expected cost per unit of time is analytically
obtained, and an optimal number to perform type-1 inspection until the next type-2
inspection is derived. Numerical examples are given when the failure time distribution

18 exponential.

6.1 Introduction

This chapter treats an extended model in Chapter 5, where a system is checked by
two-types of inspection: Type-1 inspection checks the system more frequently than

type-2 inspection, since the cost for one check of type-1 inspection is lower than that
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of type-2 inspection. However, there exist some failures which can not be detected by
type-1 inspection and can be detected only by type-2 inspection. Further, we suppose
the systém is replaced at the N-th type-2 inspect'ion, and thereafter, it becomes like
new. That is, the system operates until either the N-th type-2 inspection or the time
at which its failure is detected by type-1 or type-2 inspection. Kodo et al. (1999)
considered the optimal maintenance policy for a phased array radar, which is replaced
at eithervAspéc-iﬁed: mﬁnBer of ‘inspeétibn or at tilhé when the total of failed elements
have exceeded a specified number. ”

The inspection policy with replacement is applied to such a model: Type-1 inspec-
tion checks a system at periodic times jT (7 = 1,2,...,Nm), and type-2 inspection
checks it at periodic time kmT (k = 1,2,...,N), where m is the number to perform
type-1 inspection until the next type-2 inspection, and 7' (0 < T' < 00) is constant and
the interval of type-1 inspection. When the system fails, its failure can be detected
by type-1 inspection with probability p. On the other hand, some failures can not be
detected by type-1 inspection with probability 1 — p. The system operates until the
time N'mT or the-time that its failure is detected by inspection, whichever occurs first.

We introduce the loss cost for the time elapsed between a failure and its detection.
Then, the mean time and total expected cost to replacement, and the expected cost
per unit of time are derived. An optimal number m* which minimizes the expected
cost is analytically derived for given 7" and N. Finally, numerical examples are given

when the failure time distribution is exponential.

6.2 Model and Assumptions

We consider a system which is checked periodically by type-1 inspection or type-2

inspection, and is replaced at the N-th type-2 inspection. It is assumed that type-



6.2 MODEL AND ASSUMPTIONS ‘ 5

2 inspection can detect any failure which can not be detected by type-1 inspection.

Further, when the system is checked by the finite number of type-2 inspection, it is

replaced and becomes like new.

For this model, we make the following assumptions:

(1)

(iii)

(iv)

The system is checked by two types of inspection; type-1 or type-2 inspection.
The system is replaced at the specified N-th type-2 inspection or the time when
its failure is detected by inspection, whichever occur first. Any failure does not
occur between the first failure and the next inspection. If the failure is detected

then the system is maintained and is as good as new.

The system is checked periodically by two types of inspection. Type-1 inspection
is performed at periodic times ;T (j = 1,2,..., Nm) for somé specified T (0 <
T < 00). Type-2 inspection is performed at periodic times kmT (k= 1,2,..., N),
where m (m = 1,2,...) is the number to perform type-1 inspection until the
next type-2 inspection, i.e., type-2 inspection is done at every m times of type-1

inspection.

The failure time has a general distribution F(¢) with finite mean 1/\, where

F(t)y=1-F(@).

When the system fails, its failure is detected in the following way: The failure
can be detected by type-1 inspection with probability p (0 < p < 1) and type-
2 inspection. On the other hand, the failure can not be detected by type-1
inspection with probability 1 — p, and can be detected only by type-2 inspection,

i.e., type-2 inspection can detect any failure.

A cost ¢;; is the cost for one check of type-1 inspection, ¢;s is the cost for one

check of type-2 inspection, that is, the inspection cost at time km7T includes two
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0 mI 2mT NmT t

Figure 6.1: Diagram in case of NmT < t.

kmT+(j+1)T

0 mT 2mT kmI t

Figure 6.2: Diagram in case of kmT + j <t < kmT + (j + 1)T.

Ci2
Ci1 Ci1

0 mT  2mT kmT t (k+1)mT

Figufe 6.3: Diagram in case of kmT <t < (k-+1)T < NmT.

costs of type-1 inspection and type-2 inspection. Further, c; is the loss cost per

unit of time for the time elapsed between a failure and its detection.

When the system fails at time ¢, this model is classified into the following three
cases:
1) Case of NmT <t
The mean time to replacement is

NmT dF(t) = NmTF(NmT). (6.1)
NmT
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Further, the expected cost to replacement is

/ (Nmciy + Neg + ¢.) dF(t) = (Nmea + New + ) F(NmT). (6.2)
NmT

2) Case that the failure is detected at time t (kmT+jT <t < kmT+(j+1)T < NmT)
with probability p
The mean time to replacement is
N-Im-1 akmT+(j+1)T Nm-1 _
> / [kmT + (j + DT)dF(t) =T Y  F(kT) — NmTF(NmT). (6.3)
k=0 j=0 Y kmT+jT k=0
Further, the total expected cost to replacement is

N=1m-1 lmT+(j+1)T
Z / {lkm + (5 + D]ciy + keio + [kmT + (j + 1)T — tleq + ¢} dF(2)
k=0 j=0 ka+JT

Nm-—1 N
=cn »_ F(kT) +cy  F(kmT) — N(meqa + cio) F(NmT)
k=0 k=1
Nm-1 NmT
+ea|T Y F(RT) - / F(t)dt| + ¢, F(NmT). (6.4)
k=0 0

3) Case that the failure is detected at time ¢ (kmT < ¢t < (k+ 1)T < NmT) with
probability 1 —p

The mean time to replacement is

N-1 k+1)mT N- .
> / (k + 1)mTdF(t) Z (kmT) = NmTF(NmT). (6.5)
k=0 kmT =0

Further, the expected cost to replacement is

N-1 (k+1)mT
3 / {(k + Dymeu + (k + Ve + [(k + 1)mT — tle + & }dF (1)
=0 Y kmT

N-1

N- NmT
Z — NF(NmT) mT Z (kmT) / F(t)dt
k=0 P 0

+ ¢, F(NmT). ' (6.6)

mm -+ c,z + Cq
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Thus, the mean time A(m;T, N) to replacement is obtained as the summation of

equations (6.1), (6.3), (6.5) as follows:

Nm-1 " N-1
A(m; T, N) {T > F(AT} +(1- mTZF—(ka)} :
) k=0

Similarly, the total expected cost B (m; T, N) to replacement is obtained as the sum-

mation of equations (6.2), (6.4), (6.6) as follows:

Nm-1 N-1
B(m; T, N) = ¢, + (ciy + cdT) [ Z F(kT)+(1—p)my_F ka)}
' k=0
N 1 "NmT
+ ¢ {pZF (kmT) + F(kmT)| — cd/ F(t)dt.
k:O 0

6.3 Optimal Inspection Policy

We seek an optimal number m* of type-2 inspection which minimizes the expected cost
C(m; T, N) when the failure distribution is F(t) = 1 — e™*. Then, the expected cost
C(m; T, N) is given by

B(m;T,N)

: p (1-p)m L-p(l—e™) |7
{(Cil +¢4T) [1 — o7 + . e*’\mT] +.Ci [ —oomT )
X(l _ e—/\NmT) +c,

[ P ’<1—p>ml(1_e_w,nT)T

— po=AT — p—=2xmT
1—e 1—e

. 1—p(l—e?mT) ¢y cr
2 -~ t T
¢ 1 — e—/\mT A (1 — e—-/\NmT)
G 7
“rTT P (-pm], (6.7)
1 — AT 1 —e—amT
In particular, when ¢, = 0, letting C(m + L;T.N) > C(n; T, N), we have
m-+1)(1 — -amTy _ 1= =A(m+1)T .

> .
1 —p(l —e-mT) = (ciop + ca/N)(1 = p)
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Letting denote the left-side hand of (6.8) by L(m),

Furthér,
(,m + 1)(1 _ e—AmT) _ m(l _ e—A(m+1)T) _ m(l _ e—)\(m—l)T) + (m _ 1)(1 _ e—,\mT)

_ m[e-,\(m-nT + e—,\(m’+1)T _ 26——/\mT]

— ,’ne—)\(m—l)T(l _ 6——/\T)2 2 O

Thus, the numerator of L(m) is strictly increasing, and the denominator of L(m) is
decreasing with m. Therefore, L(m) is strictly increasing from 0 to 1/(1 — p), and
hence, if cq/A > cip then there exists an optimal m* (1 < m* < co) which satisfies
(6.8), independent of N.
Next, letting C(m + 1;T,N) — C(m; T, N) > 0 in (6.7), we have
I:(Ciﬂ) +ca/N)(1 = p)[(m + 1)(1 — e™™) —m(1 - G"A("’“)T)]}

—cp[l = p(1 — e )] + NepV(m)/(1 - p)
7o) >c + 1—p

where
V(m) =

(1 . p)[(m + 1)(1 _ e—)\mT)<1 _ 6—,\1\’(m+1)T) _ m(l _ e—)\(m+1)T)(1 _ e—-)\NmT)]:I

—-p(l _ 6—,\(m+1)T)(1 _ e—)\mT)(e—AN(mH)T _ e—ANmT)/(l — e—,\T)
(1 — e=MNmT)(1 — g=AN(m+1)T)

Letting denote the left-side hand of (6.9) by L.(m),

L,(0) = lim L,(m) =0,

m—0

Ly(c0) = lim Ly(m) = < + [—iv— —(1- p)] Cin.

m—oo A
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Table 6.1: Optimal number m* to minimize C(m; T, N) for ¢;2, 1/(AT) and ¢4T" when
p=0.9and ¢, =0.

1/(AT) =300 | 1/(AT) =600
Cio CdT

100 | 500 | 1000 | 100 [ 500 | 1000
1] 8 ] 4 3 [ 11 ] 5 4
2 | 11| 5 4 |16 | 7 5
5| 18| 8 6 | 26| 11| 8
10025 | 11| 8 |36 |16 11
15|31 | 14 | 10 | 44 | 20 | 14
20| 36 | 16 | 11 | 51 | 23 | 16
25| 40 | 18 | 13 | 57 | 26 | 18
30| 44 | 20 | 14 | 62 | 28 | 20

Therefore, if cy/A+[N/(1—p)—(1—p)]cie > ¢, there exists optimal m* which minimizes

C(m;T,N).

6.4 Numerical Examples

We compute numerically an optimal number to perform type-1 inspection until the
next type-2 inspection, 7.e., we compute numerically an optimal number m* which
minimizes the expected cost C(m;T, N) when F(t) = 1 — e M.

Table 6.1 presents the optimal number m* which minimizes the expected cost
C(m;T,N) for 1/(A\T) = 300, 600, c4T" = 100, 500, 1000 and c¢;» = 1, 2, 5, 10, 15,
20, 25, 30 when p = 0.9 and ¢, = 0. It is shown that optimal number m* increases as
¢io or 1/(AT) increases and ¢T decreases. This indicates that if the cost ¢;o of type-2
inspection is small, it would be better to perform type-2 inspection early. For example,
when ¢;p = 15, 1/(AT) = 300, ¢, = 100 and p = 0.9, the optimal number is m* = 31.
That is, when the interval of type-1 inspection is T' = 1 day, type-2 inspection should

be performed almost every one month.



6.4 NUMERICAL EXAMPLES 81

Table 6.2: Optimal number m* to minimize C(m;T, N) for p, 1/(A\T') and c;T when
¢io =10 and ¢, = 0.

1/(A\T) = 300 | 1/(AT) = 600

P CdT
100 | 500 | 1000 | 100 ] 500 | 1000

0.5 13 6 4 19 9 6
06 14 7 5 20 9 7
0.7 16 7 5 23 | 10 7
0.8 19 8 6 27 | 12 8
09] 256 | 11 8 36 | 16 11
1.0 o0 | 00 oo | oo 00

Table 6.3: Optimal number m* to minimize C(m; T, N) for N, 1/(A\T), and ¢4 when
cio = 10, ¢, = 100 and p = 0.9.

1/(AT) =300 | 1/(AT) =600
N CdT

100 | 500 | 1000 | 100 | 500 | 1000
79 | 36 | 25 |112| 51 | 36
59 | 27 19 | 83 | 38 | 27
50 | 23 | 16 | 71 | 32 | 23
45 | 20 14 [ 64 | 29 | 20
41 | 19 13 59 | 27 19
10 33 | 15 11 48 | 22 15
15| 30 | 14 10 44 | 20 14

W N

($3]

20| 28 | 13 9 41 1 19 | 13
25| 27 | 13 9 40 | 18 | 13
35| 26 | 12 9 38 | 17 | 12
40 | 26 | 12 9 37 {17 | 12
451 25 | 12 8 36 | 17 | 12
50 | 256 | 12 8 36 | 17 | 12
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| Table 6.2 shows an optimal number m* which minimizes the expected cost C(m; T, N)
for 1/(A\T) = 300, 600, c4T = 100, 500, 1000 and p = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 when
cio = 10. Tt is shown that the optimal number m* increases with probability p. This
indicates when p is small, it would be better to perform type-2 inspection early.

Table 6.3 shows the optimal number m* which minimizes the expected cost C(m;T,N)
for 1/(AT) = 300, 600, c,7" = 100, 500, 1000 and N = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50 when ¢;» = 10, ¢, = 100 and p = 0.9. This indicates that the optimal m*
decreases with' IV, i.e., if IV is large, it would be better to perform type-2 inspection

shorter. Further, when IV increase, the increment of m* decrease.

6.5 Conclusions

We have proposed the optimal replacement policies for a system with two types of
inspection. The systeni is replaéed at the finite N-th type-2 inspection, ‘dild after that,
it becomes like new. There might exist some failures which can not be detected by
type-1 inspection and can be detectéd only by type-2 inspection. This assumption
would be realistic, and the modei is also simple.

Using the optimal poiicy in reliability tlieory, we have derived the expected cost
per unit of time and have discuésed analytically the optimal inspection policy which
minimize it. Numerical eﬁamplés have béen given when the failure time distribution is

exponential.
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Conclusions

This thesis has studied the optimal inspection and maintenance policies for high reliab1‘e
systems. We have suggested several useful models where systems such as digital control
devices are checked by inspection.

To prevent the affect of failures, inspection and maintenance should be done so
. frequently. However, it might incur much loss cost and laborious work to perform
inspection and maintenance. We have obtained the optimal policies analytically by
making a trade-off between the loss cost of failures and the cost of inspection. We
have considered one cycle as the time from the beginning of system operation to the
detection of failure. Using the reliability theory, we have obtained the mean time and
the total expected cost of one cycle, and the expected cost per unit of time. Further,
we have derived analytically the optimal inspection and maintenance schedules which
minimize these expected costs, and have given numerical examples of each model and
have evaluated them to understand the results easily.

As an application for above results, we have mainly discussed how to determine
the schedules of self-diagnosis for digital control devices. However, the results would
be applied to other inspection and maintenance policies for actual systems such as

industrial or power plants, aircrafts, and so on.

83
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Some valuable contributions to the study of inspection and maintenance policies in

reliability theory have been made as follows:

In Chapter 2, we have derived the optimal inspection policies for a two-unit system:
The system firstly operates as a two-unit system and is checked by comparison-checking.
When one unit fails, the system operates as a single-unit system and is checked peri-
odically by self-diagnosis. We have introduced the costs of one check for a two-unit
system and for a single-unit system. In this model, we have proposed two models
of comparison-checking model: (1) Continuous comparison-checking model: When the
system operates as two-unit system, it is checked continuously by comparison-checking.
Thus, failures of a unit are detected immediately. (2) Periodic comparison-checking
model: When the system operates as a two-unit system, it is checked periodically by
comparison-checking. It is assumed for simplicity that the intervals and periodic self-
diagnosis for a single-unit system are the same. We have derived the expected costs for
each model, and have discussed the optimal inspection policies which minimize them.
When the failure time has an exponential distribution, numerical examples has been

shown for several parameters.

In Chapter 3, we have given the optimal inspection policies for a system with self-
testing: The system can detect its failure during its operating state without external
inspection. However, the system has the latency of detection by self-testing, i.e.,
some failures might not be detected rapidly. Therefore, for the system required high
reliability, it should be checked by external inspection at scheduled times. Thus, if the
system fails, then its failure is detected by self-testing or at the next periodic inspection,
whichever occur first. It has been shown that the self-detection rate plays an important
role for deriving optimal policies. We have proposed the periodic inspection model and

sequential inspection model. We have shown the optimal policies which minimize the
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expected costs, and have computed the numerical examples for each model.

In Chapter 4, wé have given the optimal maintenance and inspection policies for a
finite interval: In actual fields, most systems have a finite span of use. In this chapter,
we have used the partition method for this problem, where a finite interval is divided
into equal parts of maintenance or inspection. Optimal policies which minimize the
expected costs of periodic replacement with minimal repair, block replacement, simple
replacement and inspection policy for a finite interval have been derived. It has been
shown that three replacement models are summarized on a general form. Further, we
have given numerical examples of each model and have evaluated them to understand

the result easily.

In Chapter 5, we have given the optimal inspection policies for a system which is
_c:hecked by two types of inspection: Type-1 inspection has lower cost for one check
than the cost of type-2 inspection. Hence, type-1 inspection checks the system more
frequently than type-2 inspection. However, there exist some failures which can not
be detected by type-1 inspection and can be detected only by type-2 inspection. We
have derived analytically the optimal number to check type-1 inspection until the next
type-2 inspection. It has shown from numerical examples that the optimal number of

type-1 inspection until the next type-2 inspection decreases with probability 1 — p.

In Chapter 6, we have given the replacement policy for the same inspection model
as Chapter 5: Type-1 inspection has the lower cost for one check than the cost of
type-2 inspection. Hence, type-1 inspection checks the system more frequently than
type-2 inspection. However, there exist some failures which can not be detected by
type-1 inspection and can be detected only by type-2 inspection. In this chapter,
we have supposed the system is replaced at the specified N-th type-2 inspection, or

the time at which its failure is detected by inspection, whichever occur first. We have
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derived analytically the optimal number to check type-1 inspection until the next type-2
inspection.

In this thesis, we have studied the obtimal inspection and maiﬁtenance policies for
high reliable systems such as digital control devices. We have analyzed their reliability
characteristics, and have established new and adapted policies. Using the results and
techniques derived in this thesis, these policies would be modified and developed, and

be applied actually to many practical systems needed for inspection.
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