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Abstract 

This thesis treats several stochastic models of 111) systems. Using the theory of Markov 

renewal processes , the reliability measures such as the mean times to system failure and 

to completion of the process are obtained. Moreover, the expected costs are derived 

and optimal policies which minimize them are analytically discussed. Finally, numerical 

examples of each model are given and some useful discussions are made . 

This thesis is divided into 9 chapters. Chapter I states fault tolerant techniques 

and microprocessors (uPs). Chapter 2 considers a /1P system with a watchdog timer 

(WDT) which is preventively maintained at time 7' and at reset number N . ~~ext. 

Chapter 3 treats a system where a main processor (MPu) has _.'V watchdog processors 

(WDPs) with self-checking. To prevent that the MPu becomes faulty, the stochastic 

model to determine the number of WDPS is formulated. The /hP unit which consists 

of uP and WDP has been recently used. Chapter 4 and Chapter 5 study a system 

with N /LP units. It is assumed in Chapter 4 that a 1~1) is in faulty state if more than 

K resets have occurred at time 'F. From the viewpoint of real-t,ime processing of the 

system, it would be necessaJ:'y to have the function which completes one processing 

within a certain limit time. It is assumed in Chapter 5 that a uP is in faulty state if 

it does not flnish one processing until a limit time T. Chapter 6 considers a system 

with N TMR (Triple Modular Redundancy) units in which each unit consists of 11,1-) 

and WDP. Introducing the concept of complexity, an optimal number of TMR units 

which minimizes the expected cost is discussed. Chapter 7 deals with the problem for 

improving the reliability of a uP system with network processing. An optimal policy 

which minimizes the expected cost until a network processing is successful is discussed. 

Further, Chapter 8 considers the reliability problem of a pbP system whose errors can 

be detected by using signatures. An optimal division number of a job is discusse_d. 

Finally, Chapter 9 summarizes the results derived in this thesis . 
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Chapter l 

Introduction 

As a computer technology has remarkably developed, microprocessors- (/lPs) have been 

used in many practical fields , and the strong demand for improvement of their relia-

bilities has been increased. However, IlPs often fail through some faults due to noise, 

changes in the environment , hardware errors and programming bugs [Nanya9 I]. Since 

llPs have been applied in many systems with high reliability and safety such as automo-

biles and ~irplanes, it is imperative that their faults have to be detected and removed 

rapidly. Recently, several authors have studied and proposed many ideas and devices 

which watch the behavior of p;Ps. 

Two main approaches to improve the reliability of a system with ,hPs have been 

well-known: One is the method of improving the quality of composition elements of 

the system so that faults, which may cause a system failure, do not occur. This 

is called fault avoidance. The other is the method of weakening the effect of faults 

by introducing redundant techniques . This is called fault tolerance. There are three 

principal stages in fault tolerant techniques .[SS82, Mukaidon088] : Error detection and 

correction, configuration and recovery, and diagnosis and repair. 

In this thesis, we consider the reliability of a /hP system from the viewpoint of 

fault tolerance and concentrates our interest on error detection and correction, and 

conflguration and recovery techniques in fault tolerant systems . System configuration 

and recovery techniques have a closely mutual relation with the concept of redundant 

1 



2 CHAPTE･R 1. I_~'TROD UCTI O.~' 

ones in reliability theory. The system is composed of the redundancies of several 

proce.ssors and memories . A high reliability system can be realized by combining these 

techniques well. Further, to protect faults which may be caused by errors, various 

kinds of fault tolerant techniques have been used in error detection and correction by 

a watchdog timer or processor, and the ope.ration of reset. 

The_ theory of Markov renewal processcs is used in this thesis to analyze the 

above stochastic systems: Markov renewal processes were flrst studied by Ldvy (1954) 

[Le'vy541 and Smith (1955) [Smith55]. Pyke (196la. 196lb) [Pyke6la, Pyke6lb] gave a 

careful definition and discussions in detail. Recently, Cinlar (1975a, 1975b) [ 'nlar75a, ~ ) 
nlar~/ 5b] surveyed many results and gave diverse applications in an extensive bibliog-~ 

raphy. In reliability theory, these processes are one of the most powerful mathematical 

techniques for analyzing complex sv~ stems. Barlow and Proschan (1965) [BP65] gave 

a table of applicable stochastic processes associated with repairman problems . Fur-

ther. _Nakagawa and Osaki (1979) [lN079] analyzed twG~unit systems. using a unique 

modiflcation of the regeneration point techniques of Markov renewal processes. 

This thesis forms several stochastic models of a /lP system which reflect actual 

ones. Using the theory of Markov renewal processes [Osaki92j , the reliability measures 

such as the mean times to system failure and to completion of the process are obtained. 

Moreove.r, the expected costs are derived, and optimal policies which minimize them 

are analytically discussed. Finally, numerical examples of each model are givenL and 

some useful discussions are made_ . 

l.l Fault Tolerant Techniques 

Fault tolerant techniques are the method by which a system can realize to tolerate 

faults. under the condition that they cannot be completely prevented. Actually, as 

computer systems which have been able to realize the fault tolerance, a multiprocessor 

system, a dual system and a duplex system have been well-known. In this thesis, some 

fault tolerant techniques are introduced to improve the reliability of systems. 
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As a sirnple method of monitoring the behavior of a keP, a watchdog timer (WDT) 

has been widely used because it is simple and its cost is low [FN88, NK85] . A WDT 

can detect some errors of a uP by monitoring periodic signals from a /hP. If the signal 

from a /hP does not come within a certain time, a uP is reset by a WDT and the 

system is recovered. Recently, a WDT with self-checking function has been used in the 

system because faults of a WDT sometimes occur. 

A watchdog processor (WDP) [MM88, Lu82, SM90] is a small and sirnple copro-

cessor extending the function of a WDT, and it can detect errors by monitoring the 

control flow and memory access behavior. For example, an error detection is carried 

out by mernorizing the characteristic information of the monitoring target and by com-

puting the bus information in the operating state, after which results are compared. If 

its comparison does not agree, a kbP is reset by a WDP and the system is recovered. 

Generally, when we consider the reliability of a system on an operational stage, 

we should regard the cause of error occurrences of a /hP as faults of software, such 

as mistakes of operational control and memory access, rather than faults of hardware. 

That is, when error's of a /lP have occurred, it would be effective to recover a system 

by the operation of reset [Nanya9l]. 

1.2 Microprocessors 

The development of fault tolerant techniques relates to the expansion of applicable 

fields of a uP. In this section, a /hP is explained simply. 

A CPU (Central Processing Unit) which makes the central part of a computer 

consists of execution unit and control uni~･ As IC (Integrated Circuit) technologies 

have rapidly developed, a CPU has been miniaturized. Such a CPU consists of one 

chip of LSI (Large Scale Integration) and is called a lhP. Moreover, memory systems 

and input / output devices are connected to a /hP [Kaneda91, On096, Shima99] . 

A /lP was first produced by Intel Corp. in 1971 and was named Intel4004 [IEICE98] . 

This /~P had 2300 transistors per one chip and had the arithmetic register of 4 bits in 
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length. After that, IhPs which have the arithmetic register of 8 bits, 16 bits and 32 

bits in length, respectively, were developed. Recently, the /lP which has the register of 

64 bits in length was produced and its integration level became 1 5 million transistors 

per one chip . Thus, IlPs become to have advanced functions and high performances . 

As a result, uPs have been applied in many .actual systems such as electrical products, 

automobiles , communications , and so on . 

1.3 Outline of Thesls 

This section describes the outline of this thesis. This thesis is divided into Introduction, 

Chapters 2-8, Conclusions and Bibliography, 

Chapter 2 considers a ,hP system with a WDT which is preventively maintained 

at time t and at reset number N. The availability of the system is obtained, and 

an optimal inspection time and reset number which maximize it are analytically dis-

cussed. Numerical examples are given when errors of a uP occur according to a Weibull 

distribution. 

Chapter 3 treats a system where a main processor (MPu) has N WDPS with self-

checking. If a WDP cannot detect errors of the MPu, the MPu goes to faulty state. 

To prevent that the MPu becomes faulty, the problem to obtain how many number of 

standby WDPS is optimal is presented. The reliability function and the expected cost 

until the main processor becomes faulty are derived, and an optimal number of WDPS 

which minimizes the expected cost is analytically discussed. Numerical examples are 

finally given when errors of MPu occur according to an exponential distribution. 

The /hP unit which consists of /hP and WDP has been recently used. Chapter 4 

studies a system with N uP units. It is assumed that a uP is in faulty state if more 

than K resets have occurred at time T. Then, the mean time until system failure is 

derived. Introducing the cost of a l~P, the problem to obtain how many number of 

/lP unit is optimal is analytically discussed. Nurnerical examples are given when the 

failure time of a uP is exponential. 
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From the viewpoint of real-time processing of the system, it would be necessary to 

have the function which completes one processing within a certain limit time. Chapter 

5 discusses the model of a system with N /1P units. It is assumed that a ,1P is in faulty 

state if it cannot finish one processing until a limit time T. Then, the mean time and 

the expected processing number until system failure are obtained. Moreover, the cost 

effectiveness is derived, and an optimal number of 11Ps which minimizes it is discussed. 

Numerical examples are finally given for several standard parameters . 

Chapter 6 considers a system with N TMR (Triple Modular Redundancy) units in 

which each unit consists of /LeP and WDP. Introducing the concept of complexity, the 

mean time to system failure and the expected cost are derived, and optimal numbers 

of TMR units which maximize the mean time and minimize the expected cost are ana-

lytically discussed. Numerical examples are given when errors of a uP occur according 

to an exponential distribution. 

Chapter 7 deals with the problem for improving the reliability of a /lP system with 

network processing: After the system has made a stand-alone processing, it executes a 

network communication procedure successively, The mean time and reset number until 

the success of a network processing are obtained. The expected cost until a network 

processing is successful is derived, and an optimal reset number which minimizes it is 

discussed. Numerical examples are given when errors of a /lP occur according to an 

exponential distribution. 

Chapter 8 proposes the reliability problem of a /hP system whose errors can be 

detected by using signatures: When a system consists of DMR (Double Modular Re-

dundancy), the same job is executed on two processors and is divided into N tasks 

with signatures. The mean time and the t9tal processing number of tasks until a job 

completes successfully are derived. An optimal policy which minimizes the mean time 

is discussed. Finally, numerical examples are given under suitable conditions. 

Finally, Chapter 9 summarizes the results derived in this thesis . 





Chapter 2 

Optimal Maintenance Policies for 
a Microprocessor System with 
~~=~'v~~'~v"~atchdog Timer 

This chapter considers a nxicroprocessor (llP) system with a watchdog timer (WDT): 

When errors of a uP have occurred, a WDT detects them with a certain probability 

and rese~s a /lP to an initial state. Otherwise, a /lP goes to faulty state. To prevent 

a /lP from faults, it is preventively maintained at constant time T or at N-th reset, 

whichever occurs first. The availability of the system is derived, using the theory of 

Markov renewal processes . An optimal time T* and number N* which maximize the 

availability are analytically discussed. Finally, numerical examples are given. 

2.1 Introduction 

As a silnple method of monitoring the behavior of a microprocessor (/hP), a watchdog 

timer (WDT) has been widely used because it is simple and its cost is low [FN88, 

NK85]. A WDT can detect some errors of a peP by monitoring periodic signals from 

a 11P, however, it is impossible to detect any errors. Therefore, it would be necessary 

to develop a WDT with more advanced capabilities and to improve the reliability of a 

whole system including a l~P. 

7 



8 CHAPTER 2. OPTIMAL M:AINTENANCE POLICIES . . . 

This chapter considers a ,lP system with a WDT: When errors of a /lP have oc-

curred, a WDT detects them with a certain probability and resets a /hP to an initial 

state. Otherwise, a uP goes to Laulty state. To prevent a /lP from faults, it is preven-

tively maintained at constant time T or at N-th reset, whichever occurs flrst. Using the 

theory of Mairkov renewal processes [Osaki9~] , we derive the availability of the system, 

and discuss analytically an optimal time T* and number N* which maximize it. When 

errors of a /lP occur according to a Weibull distribution, numerical examples are given. 

2.2 Model and Availability 

A WDT monitors the behavior of a lhP. When a WDT detects errors of a lhP, it I esets 

a /lP to an initial state. We assume that: 

(1) A WDT works independently of a uP and does not fail. 

(2) Errors of a /lP occur at a non-homogeneous Poisson process with an intensity 

function A(t) and a mean-value function A(t), i.e., A(t) - fot A(u)d'u. Hence, the 

probability that the j-th number of errors have occurred during (O, t] is Hj (t) = 

{[A(t)]j/j!}e~A(t)(j O, l, 9_, . . .). 

(3) Errors of a /hP can be detected with probability p (O < p < I ) and it is reset to an 

initial state with probability a (O < a < l) by a WDT. Otherwise, errors cannot 

be detected with probability I -p and it is not reset with probability I oi. Thus, 

when errors have occurred, a /hP goes to faulty state with probability I - pa. 

(4) When a /~P has gone to faulty state, it undergoes the corrective maintenance by a 

user and returns to an initial state according to a general distribution G2(t) with 

finite mean 1//~e2. 

(5) A /lP is inspected and preventively maintained at time T or at N-th reset, 

whichever occurs flrst. When time T comes or N-th reset is made before the 
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occurrence of fault, a peP returns to an initial state according to a general distri-

butions G3 (t) with finite mean 11//3 or G1 (t) with finite mean 1//hl' respectively, 

where 1//h3 < ll/h2 and 1//hl < 1//h2' 

We define the following states of the system: 

State O: A /hP begms to operate as an nutial condition 

State I : A WDT makes the N-th reset of a /LbP. 

State 2: A /LP goes to faulty state. 

State 3: The maintenance of a /LP begins at time T. 

The system states deflned above form a Markov renewal process . Transition dia-

gram between system states is shown in Fig.2.1. 

Let Qij (t)(i, j O , I , 2 , 3) be one-step transition probabilities of a Markov renewal 

process. Then, mass functions Qa,j (t) from state i at time O to state j at time t are 

given by 

Qol(t) (pa) o A(u)HN 1(u)A(u)dv 

Q02(t) ~; (pc~)j(1 -pa) o A(u)H3(u)A(u)du, (2.2) 
j=-o 

N- 1 
Q03 (t) ~ (pa)j f t Hj (u)dA(u) , (2.3) 

j=0 O 
Q~o(t) G~(t) (i ' 1,2,3), (2.4) 

where 

l: t>T, 
A(t) O : t < T, (2.5) 

Is the degenel ate distnbution placmg umt mass at T and A(t) - I - A(t). 
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Let q,j(s) and gi(s) be the Laplace-Stieltjes (LS) transforms of Qzj(t) and G, (t), 

respectively. Then, we have 

T 
qol(s) (pa)N o e~stHN l(t)A(t)dt (2.6) 

N- 1 T 
q02(s) ~ (pa)3(1 -1pa) o e~stH (t)A(t)dt (2.-() 

3=0 
N- 1 

q03 (s) ~ (pa) je~sTHj (T') , (2 .8) 
j=0 

qiO(s) g,(s) (i l, 2, 3) . (2.9) 
We denve the steady state availabillty of the system fiom (2 6) - (2.9). When the 

system is in state O at time O, the transition probability Poo (t) that it is in state O at 

time t is given by 

~ Q03 (t) + Q03 (t) * Qjo (t) * Poo(t), 

j= 1 3=1 
where the asterisk mark denotes the Stieltjes convolution. Taking the LS transform of 

(2.10), we have 

l ~ qoJ (s_') 

poo(s) o e stdPoo(t) 
1 - hoo(s) ' 

where 
hoo (s) ~ qoJ (s)qjo (s) , (9-. 12) 

j= 1 

is the LS transform of the recurrence time distribution to state O. Thus , the steady-

state availability P (jV, T) of the system is given by 

P(N.T) - tli_>~~ooPoo(t) Iimpoo(s) 
s-o 

N- I T ~; ' ( pa)3 H3 (t)dt 

~oo 



where 

l 1 eoo ~; (pcv)3 Hj(t)dt + ( N ~ Hj(T) ) ( pa ) 

o /h2 I/2 
N-1 _( 1 1 ) ~ (pa)jH:f(T), (2.14) 

/Lb2 /h3 j=0 

is the mean recurrence time to state O. 

In particular, when T -> oo, i.e., a uP is preventively maintained only at N-th 

reset, the steady-state availability is 

I)(N) = ;i_,+mooP(N,T) 

N~ I oo ~; (pc~)j H (t)dt 

1 

~ (pa)N + [1 - (pa)N] (pa)3 Hj (t)dt + 
l/ 1 

Similarly, when IV -> oo, i.e., a uP is preventively maintained only at time T, the 

steady-state availability is 

P(T) ~i_.moo P(N, T) 

oo T ~ ( pCY ) j Hj (t)d t 

1 1 1 oo oo T 
~](pc~)3 Hj(t)dt + - ( ) ~(pa)jHj(T) 

i=0 O //2 I~3 j=0 
l/ 2 

2.3 Optlmal POllCles 

We consider optimal policies which maximize P(N. T) in (2.13) when A(t) is strictly 

increasing and A(oo) - Iimt_oo A(t). 
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2.3.1 Optimal reSet number 

We seek an optimal number N' which maximizes P(N, T) in (2.13) for a spe_cified T. 

From the inequality P(N + 1, T) P(_iV, T) < O, we have 

~ 
* ' j=N+1 ~; (pa)jHj('T) + (pa)N ~; Hj(T) + ~ (pa)j(1 - pa) o H3(t)dt 

T 
j=N HN(t)dt j=0 j=0 

1 

(1 - D) ~ (pa)3Hj(T) - HN(T) ~ (pa)j P;2 1 '(2.17) H (t)dt ~ l 
T 

j=0 HN (t)dt j=0 l~2 'll 

where 

1 l 
D s 'h2 'h3 (2.18) l l' 

/L2 u1 
Denote that the left side of (2.17) by LT(N). Then, when D < 1, we have LT(N) -

LT(N 1) > O from Appendix 2.1, and hence, LT(N) is strictly increasing in N. It is 

evident that from the assumption of 11/~1 < 1//h2, 

1 

I.T(O) I < I //2 (2.19) l' 

;12 p; 1 

First, suppose that D 1, i.e., 11//1 1/,h3' Then, since limN_* ~]3~=N+1 H7 (T)l 

foT IIN(t)dt A(T) from the reference [NK83] , we have 

LT(oo) ~ Nli_>mooLT(N) 

e~(1-Pa)A(T) + A(T)(1 - pc~) OT e~( Pa)A(t)dt 

Thus, we have the following optimal policy: 

(2.20) 



(a) If LT(oo) > (1//h2)/(1/u2 - 1//hl)' then there exists a flnite and unique minimum 

N' which satisfies (2.1 (~) . 

(b) If LT(oo) ~ (1///2)/(1//h2 - 1///1)' then N' oo, and the steady-state availability 

is given in (2.16). 

Next, suppose that D < 1, i.e., 1//hl < l//h3' Then, from Appendix 2.2, we have 

LT(oo) NliLmoo LT(N) oo (2.21 ) 
Thus, there exists a finite and unique N* which satisfles (2.17). 

When D > I , i.e., 11/11 > l/p;3, the mean maintenance time for time T is shorter 

than that for N-th reset , and hence, we expect that N* oo. This obvious fact will 

be indicated in a numerical ex~,mple. 

2.3.2 Optimal inspection time 

We seek an optimal time T' which maximizes P(N, T) in (2.13) for a specified N. 

Differentiating equation (2.13) with respect to T and setting it equal to zero, we have 

N- 1 * ~ (pa)3Hj(T) + (pa)N ~; Hj(T) + A(T) ~ (p(1i)3(1 Pcii) Hj(t)dt 

7=N j=0 

+(D l) ~ (pcli)jH3(T') + A(T) ~ (poi)3(1 - Pa) H3(t)dt 

1 

N- 1 +A(r)(pa) ~ (pa)j JfoT H3(t)dt . HN_1(T) . (2.22) 
l 1 N- 1 

j=0 O ~ (pct:) j Hj (T) I/ 1 
lh2 

j=0 

Denote that the left side of (2.22) by LN(T) . If D ~ I and A(t) is strictly increasing, 

then LN(T) is also strictly increasing in T from Appendix 2.3 and LN (O) O. 

First, suppose that D I . Then, we have, 

LN(oo) ~ ;i_>+m~ LN(T) 
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A(oo) ~ (pa)j(1 pa) N (2.23) Hj(t)dt + (pa) . 

Thus , we have the following optimal policy: 

(c) If LN(oo) > (1//12)/(11//2 l//hl)' i.e., 

1 

/h2 N 1 1 ( pa ) 

A(oo) > //2 Ihl 
~ (pa') j ( I pa) Hj (t)d t 

then there exists a flnite and unique T' which satisfles (2.22). 

(d) If LN(oo) ~ (1///2)/(11//2 - l/u1) then T' oo, and the steady-state availability 

is given in (2.15). 

Next, suppose that D > l, i.e., 11//1 > ll,l3' Then, 

N (2.24) [.N(oo) DA(oo) ~ (pce) (1 pa) o Hj(t)dt + (pa) . 
j=0 

Thus, if 
1 1 

( )[1 - (p(y)N] + ( )(pa) N 
/~2 

( I _ ) ~; (p(li)3(1 - Pc~) Hj(t)dt 

/h2 I/3 j=0 O 
then there exists a flnite aud unique T' which satisfles (2.22). 

If D < 1, i.e., l//hl < l//h3, then it is shown in a nulnerical example that T' oo. 

2.4 Numerlcal Examples 

Suppose that A(t) Ao/.2, i.e., errors of a /lP occur according to a Weibull distribution 

with shape parameter 2, and its mean time is r(1 + 1/2)/~~: 24 hours. Further, 
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when errors have occurred, the probability that a /lP is reset by a WDT is poi 0.7 -

0.9. 

Table 2.1 gives the numerical example of optimal nulnber N* when T 72, 96, 120, 

co. When T oo, this corresponds to the model where a /~P is preventively maintained 

only at N-th reset. When I l/hl I l//3 , it is indicated from Table 2.1 that N' decreases 

with T and (1/u2)/(1/u1)' however, increases with pa. For example, when poi 0.8, 

(1//L2)/(1/l/1) 3 and T 120 hours, the optimal reset number is N' 3. It is shown 

that N* oo when 1///1 > l//h3' 

Table 2.2 gives the numerical example of optimal time T' when the upper reset 

number ~V is 1,3, 10, 100, oo. When N oo, this corresponds to the model where a 

/lP is preventively maintained only at time T. When 11/hl l//h3, it is indicated from 

Table 2.2 that T' decreases with N and (1/u2)/(1//hl)' however, increases remarkably 

with pa . When pa is srnall, i.e., the performance facility of a WDT is low, we should 

maintain a uP at small intervals. It is showrt that T' oo when 1///1 < l/,h3. 

2.5 Conclusions 

We have investigated a /lP system with WDT which is preventively maintained at 

time T and at reset number N. We have derived the steady-state availability P(N, T) 

of the system and have analytically discussed an optimal N* and T' which maximize 

it . From the numerical examples, it has been showrl that we have to maintain a /hP 

frequently when the performance facility of a WDT is low. So that , we should make 

every possible efforts to develop the facilities of a WDT for improving the reliability of 

the systeln. When l/u1 > l//h3 , i.e., the mean maintenance time for time T is shorter 

than that for N-th reset, we have to maintain a /1P only at time T. Oppositely, when 

11//1 < 11,~3, we have to maintain a ;hP only at N-th reset. 
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Table 2.1: Optimal reset number N* 
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Appendix
2．1。Proof　of　LT（N）一ゐT（ノV－1）＞O　when」0≦1

From　equation（2．17）ラ

　，LT（N）一LT（酔1）

　　　　　　　　　　　　　　　　　の　　　　　　　　　　　　　
　　　　　　　　　　　　　　　Σ⊃　葛（T）　　　Σ⊃罵（T）

　　　一翼ψα）ゴ（1一鑓）伽1デ嵐（、）4、一蒜（舌）41

　　　　＋（・一P）翼（御）ゴ垢丁　｛垢雛、携1織，］（舩・）

Wh？nλ（孟）isstrictlyincreasing・weh甲e，丘・mthere艶rencelNK831

　　　　　　　　　　のの　　　　　　　　　　　　　の
　　　　　　　　　　Σ⊃石㌧（T）　　　Σ⊃1ち・（T）

　　　　　　　　　ゴ＝桐　　一矧　　＞0．　　　（A2．2）
　　　　　　　　　話丁πN（む）砒話丁πN一・（哲）砒

　Wie　show　o：nly　the　fbllowing　inequε面ty：

　　　　　　　　　　五11v（T）　　　　丑N＿1（T）
　　　　　　　　　　　　　　一　　　　＞0．　　　　　（乃2．3〉
　　　　　　　　　μ（孟）碗丁聯）砒

It　is　evident　that

HN（T）話THN一・（亡）d礁一・（T）ズ酬砒

　　　綴）卜（T）話丁聯）4孟一∠TA（孟〉飾一・（孟）4孟］

　　　一撫鍔）倉・（諺）IA（T）一A（孟脚・　　　（舩4）

Thus，it　is　proved　that　LT（N）一LT（ノV－1）＞O　when　Z）≦1andλ（オ）is　s面ctly

ヨ　　　　　　　　　　　　　　の

1ncreaslng・
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2.2. Proof of LT(c~) oo when D < 1 

From equation (2.17), 

LT(oo) ~ ~lLmoo LT(N) De~(1-P")A(T) + A(T)(1 pa) OT e~(1 P")A(t)dt 

e (1-P")A(t)dt lim +(1 -D) o '~ T ' (A2.5) N~* HN(t)dt 

When A(t) is strictly mcreasrng we easily have 

N [A(T)] _A(T) 

lim HN (T) N! e li m 

N-* T [A(t)] ._A(t)dt N~* HN (t)d i. 

o N! e 

oo. N~~ oT[A~A((:_T))]N ~A(t)dt 

Thus. I.T(oo) oo 

2.3. Prove that LN(T) is increasing in T 

When D ~ I and A(t) is strictly increasing, we show that L~(T) > O. From equation 

(2.22), 

J.~(7') Al(T) ~; (pa)3(1 - pa) Hj(t)dt 

+(D 1) A (T) ~(pa)3(1 pc~) o H3(t)dt 
j=0 

N~1 H (t)dt HN_1(T) T +Al(T) (pa)N ~; (pa)j 
N- 1 

j=0 ~; (pa)3 H3 (T) 
3=0 

N-1 . T +A(T)(pcv)N ~; (pa)j Hj(t)dt 
3=0 
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　　　　　　　　×N－1λ（T）［HN－2（THPα）HN－1（T）＋（響田牛1（T）12］｝・（　）

　　　　　　　　　Σ⊃（Pα）ゴ葛（T）　　　　　　　　　　　　　　　　　Σ⊃（Pα）フ罵（T）

　　　　　　　　　ゴ＝0　　　　　　　　　　　　　　　　　　　　　　　　　　　　ゴ＝O

The　bracket　on　the　last　term　in（A2．7）is

　　　　　　　　　　　　　　　　　　　　（1ρα）NIHN＿1（T）12
　　　砺一2（T）一（郷）酬一1（T）＋N一、

　　　　　　　　　　　　　　　　　　　　Σ（Pα）％（T）

　　　　　　　　　　　　　　　　　　　　ゴ＝0

　　　　　　　　　－N一、1｛HN－2（T）珊（T）

　　　　　　　　　　　Σ1（」ρα）ブ罵（T）

　　　　　　　　　　　，ブ＝0

　　　　　　　　　　　＋署（卸α）ゴ［砺一2（T）葛（T）一丑N一・（T）琢・（T）1｝・（且a8）

Sinqe

　　　丑N｝2（T）葛（T）覗N－1（T）罵一1（T）一ε一2A（T）IA（T）IN＋ゴ剛2（N－1一ゴ）≧・，（A2．9）

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　（N－1）！ゴ！

　　　　　　
we　have　L勾（T）＞0．Thus，LN（T）is　strictly　increasing　when　Z）≧1andλ（ε）is　strictly

　　　　　　　　　　　　　　　　　　　　　　　　　　

1ncreaslng・





Chapter 3 

Reliability Evaluations of 

a Fault Tolerant System with 
N ~'~'-'.'~~~~~-'."'~atchdog Processors 

This chapter considers a fault tolerant system where a main processor (MPu) has 

N watchdog processors (WDPs) with self-checking: When errors of the MPu have 

occurred~ a WDP detects them with a certain probability and resets the MPu to an 

initial state. Otherwise, the MPu goes to faulty state. If a WDP fails, it detects 

the failure with itself and one of other WDPS in standby begins to monitor the MPu 

again. The above procedures are repeated until all of WDPS have failed. The reliability 

measures such as the mean time, the reliability and the expected cost until the MPu 

becomes faulty are derived. An optimal number of WDPS which minimizes the expected 

cost is analytically discussed. Finally, numerical examples are given. 

3.1 Introduct ion 

Generally, microprocessors (kcPs) often fail through some faults due to noises and 

changes in the environment , hardware errors and programming bugs [Nanya91, FN88] . 

As a simple method of monitoring the behavior of a 11;P, a watchdog timer (WDT) 

has been widely used in actual fields [FN88, NK85] . A watchdog processor (WDP) 

23 
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[MM88, Lu82, SM90] is a small and simple coprocessor, which extends the function 

of a WDT, and can detect errors by monitoring the control flow and memory access 

behavior [Nanya9l]. 

This chapter considers a fault tolerant system where a main processor (MPu) has 

N WDPS with self-checking. The purpose of this model is to improve the reliability 

of a whole system including the MPu and to derive their reliability measures. If a 

WDP cannot detect errors of the MPu, the MPu goes to faulty state. Therefore, 

for prevention that the MPu becomes faulty, we formulate the stochastic model to 

determine the number of WDPs. 

Errors of the MPu occur according to a certain probability distribution and are 

detected by a WDP. That is, when errors of the MPu have occurred, a WDP detects 

them with a certain probability, which is called coverage of a WDP, and resets the 

MPu to an initial state. Otherwise, the MPu goes to faulty state. The MP,u has N 

WDPS where one WDP monitors the MPu and the others are in standby. If a WDP 

faiils, it detects the failure with itself and one of other WDPS in standby begins to 

monitor the MPu again. The above procedures are repeated until all of WDPS have 

failed. We derive the mean time and the reliability until the MPu becomes faulty. An 

optimal number of WDPS which minimizes the expected cost is analytically discussed. 

Finally, numerical examples are given. 

3.2 Model and Mean Time 

Figure 3.1 draws the outline of the model. We consider the system where a MPu has N 

standby WDPS and make the following assurnptions: A WDP monitors the signature 

of execution process and judges whether the MPu is normal or abnormal. If a WDP 

judges that the MPu is abnormal, i.e., a WDP detects errors of the MPu, a WDP resets 

the MPu to its initial state, although the system cannot determine the cause of error 

occurrences. That is, the MPu recovers from faulty state by the retrial [Nanya91]. 



( I ) Errors of the M:Pu due to mistakes of memory access or mernory control occur 

according to a general distribution F(t) with finite mean l/A. 

(2) A WDP can detect errors of the MPu with probability p(O < p < 1) and resets 

the MPu to an initial state. This probability p is called coverage of a WDP. If a 

WDP cannot detect errors of the MPu, the MPu goes to faulty state. 

(3) Faults of a WDP due to its hardware errors occur according to an exponential 

distribution (1 - e~at), and a faulty WDP cannot detect any errors of the MPu. 

(4) A WDP has self-checking. When faults of a WDP have occurred, it detects them 

with probability O(O < O < 1) instantly, and changes to one of standby WDPs. 

In this case, it resets the MPu to an initial state and begins to monitor the MPu 

again. On the other hand, if a WDP cannot detect faults of itself with probability 

1 - O, a WDP remains in faulty state. In this case, if errors of the MPu occur, it 

goes to faulty state. 

(5) The switch-over from a faulty WDP to a WDP in standby needs a random time 

according to an exponential distribution ( I e~pt ) where ~ > a . If errors of the 

MPu occur during the switching, it goes to faulty state. 

Under above assumptions , we deflne the following states of the system: 

(~ 1 2, ･ ･ . , N). State i,: The i-th WDP begins to monitor the MPu ; 

State F: The MPu becomes faulty. 

The system states deflned above form a Markov renewal process [Osaki92] where 

state F is an absorbing state. Transition diagram between system states is shown in 

Figure 3.2. 

Let Q,,j(t)(i I , 2. ･ ･ ･ , N; j l, 2, ･ ･ ･ , N, F) be one-step transition probabilities 

of a Markov renewal process and ip(s) be the Laplace-Stieltjes (LS) transform of any 
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function ~)(t), i.e., ip(s) ~ fo* e~std~)(t) for Re(s) > o Then from Appendix 3 1 we 

have 

q.,i(s) pf(s + a) (i 1, 2, . . . , N), (3.1) 
q,,F(s) I (1 p)f(s + a) + (1 - e)[f(s) - f(s + c~)] 

l - pf(s + oi) 

aO 
+ [f(s + p) f(s + a)] (i l, 2, . . . , N), (3.2) 
a-13 

qi i+1 (s_ ) I a pO 1 ' [1 - f(s + f3)] 
' l-pf(s+a) a-/3 s+f3 

l 
- [1 - f(s + a)] (i l, 2, . . . , N - l), (3.3) 

s_' + a 

qN F(s) I [f (s) - pf (s + cv)]. (3.4) 
' I - pf(s + a) 

We derive the mean time e(N) until the MPu becomes faulty. Let HN (t) be the 

first-passage time distribution from state I to state F. Then, we have 

HN(t) Ql'F(t) + Q1'2(t) * Q2.F(t) + . . . + Q1'2(t) * ' ' ' * QN-1'N(t) * QN,F(t). (3.5) 

Taking the LS transforms on both sides of (3.5) and arranging them, we have 

1 - j(s + p) I - f(s + a) a pa 1 

hN (s) ~; -
J 

j=0 a-p I pf(s+(y) s+p s+a 
l 

(1 - p)f(s + a) + (1 - O)[f(s) - f(s + oi)] x I -pf(s + a) 

aO 
[f(s + ~) f(s + a)] + oi p 

N-1 1 f(s + p) I - f(s + a) c~/30 1 
J 

a-p I pf(s+(y) s+p s+a 
1 

[f(s) - pf (s + a)] (N 1, 2, . . .), (3.6) x I pf(s + a) 

where ~]3T_-10 ~ O. Hence, the mean time ~(N) until the MPu becomes faulty is given 

by 

~(N) - tdHN t lim [ hN(s)] ~ o ( ) s-O ds 
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l - AN-1 

l pf(cv) I A B + ~AN-1 ( V 1 2 ) (3 7) 

where 

O a[1 - f(p)] /3[1 f(a)] 

l - pf(a) ' a p 
6 (y[1 - f(/3)] p[1 - f(o/)] l 

+ A(1 O) (3.9) a 13 a 
and from A qi,.+1(O), note that O < A < 1. It is evident that when N O, i.e., the 

MPu does not have WDP, we have ho(s) f(s_ ) and e(O) 1/A. 

3.3 AnalyslS Of Rellability 

Let RN (t) be the probability that the MPu does not become faulty until time t and 

we deflne RN (t) _ I - HN(t). That is, RN(t) denotes the reliability function when the 

MPu has N WDPs. 
Especially, suppose that faults occur at random, i.e., F'(t) I - e~At Then fiom 

Appendix 3.2, equation (3.6) is simplified as follows: 

N- 1 
s_p 

1- [s + (Y + A(1 p)](s + ~ + A) ,~_' + A .~_' + oi + A(l 
3 =0 

(N l, 2, . . -). (3.10) 
Thus, taking the LS inverse transform of hN(s), from Appendix 3.3, we obtain RN(t) 

(N O, 1, 2, . . .) successively. For example, Rl(t) is given by 

pA 
R1 (t) e {e~[a+)L(1-P)]t _ e~At (3.1 l) -At } 

a-Ap 
In particular, when N -> oo, from Appendix 3.4, we have 

R0<) (t) NliLmoo RN (t) 

e~At + pA p + A tL'I e~wlt p + A w2 _w2t. 
(wl ~l)2)(wl ~ A) (tl'l w2) (w2 A) e 
lj~ 

e ~ ;Lt 

A) (u.'2 A) ' 
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where 

1 
- [a + ~ + A(2 - p) + (a - p - Ap)2 + 4a(30], 

1 
E [a + p + A(2 - p) - (a - p - Ap)2 + 4ape]. 

3.4 Optimal POlicy 

Let cl be the acquisition cost for a WDP and c2 be the cost for the fault of the MPu. 

Then, the expected cost C(N) per unit of time of the system with N WDPS is given 

by 

_ Ncl + c'2 
C(N) = e(N) 

1 Ncl + c2B I AN_1 (N 1, 2, . . .). (3.15) 
1 - AN-1 

1 - pJ'(a) I - A + ~fl 

We seek an optimal number jV' which minimizes C(N) in (3.15). From the inequal-

ity C(N + l) - C.'(N) ~ O, we have 

(1 AN-1) + ~AN-1 
cl + c2 B B 1 

1 

l A . (3.16) - (N l) -- > AN- I ( I A) ~ cl I - A A 1 A A 
Hence, if B/(1 - A) - 1/A ~ O, i.e., AB ~ I A then C(N) is strictly increasing in N. 

In this case, N* O. 

Next, assume that AB > I A. Then, arranging inequality (3.16), we have 

1 - AN-1 + D cl + c2 
AN-1(1 -A) ~ (N 1) > (3.17) ~ cl 

where 

AB (1 - A) ' 

Denoting the left side of (3.17) by L(JV), we have 

L(N) L(N 1) I - AN-1 + D > O (3.19) 
AN-1 
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AB - (1 A) ' 

L(oo) ~i_*m* L(N) oo (3.21) 
Hence, I.(JV) is strictly increasing in N from L(1) to oo. Thus, if L(1) < (cl + c2)/cl' 

i.e., AB - (1 - A) > cl/(cl + c2) then there exists N'(> 1) which satisfies (3.17). 

Otherwise, if L(1) ~ (cl + c2)/cl' i.e., AB - (1 - A) ~ cl/(cl + c2) then N' l. 

Thus , we have the following optimal policy: 

(i) If AB - (1 A) < O, then N' O and the expected cost C(O) Ac2' In this case, 

the MPu should have no WDP. 

(ii) If O < AB (1 A) ~ cl/(cl + c2), then N' 1. 

(iii) If AB - (1 - A) > cl/(cl + c2), then there exists a finite and unique minimum 

N'(> 1) which satisfles (3.17). 

3.5 ~Tumerical ExampleS 

We compute numerically the reliability RN (t) and the optimal number N* which min-

imizes C(N). Suppose that errors of the MPu occur according to an exponential 

distribution F(t) - I - e~At. Let the mean hung-up time (1 day - 10 days) of a llP 

correspond to the mean time 1/A to error occurrences of the MPu and l/A I (day). 

Let the_ mean time ( I month - I year) to error occurrences of a WDT correspond 

to the mean time 1/a to error occurrences of a WDP and 1/a 30 - 365 (days). 

Further, for the sake of convenience, suppose that the mean processing time of the 

switching from a WDP to other WDPS in standby is l/p 11(30 x 104). Moreover, 

the probability that a WDP detects the failure with itself is 6 0.8 - 0.99 and the 

coverage of a WDP Is p 0.8 . O 99 the acqulsitlon cost cl for a WDP is a unit of ~ 
cost and the cost rate of the fault of the MPu to a WDP is c2/cl 102 - 107. 

Figure 3.3 draws the reliability I~N(t) for N O 1 2 3 4 oo when 1/a 30 (days), 

'',,' 
p O 99 and e 0.8. This indicates that RN(t) increases evidently with N. When 
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N ~ I , RN (t) increases noticeably compared with the case of N O, i.e., the MPu 

does not have a WDP, however, its increase rate decreases gradually with N and nearly 

converges to the value of Roo (t). From this numerical exalnple, it is estimated that the 

systern is enough to have about 3 WDPs. 

Next, Table 3.1 gives the optimal number N* which minimizes C(N) when 1/A 1 

(day), p 0.8 and e 0.8. This indicates that N* decreases with l/a, however, 

increases with c2/cl ' For example, when l/oi 180 (days) and c2/cl 103, the 

optimal number of WDPS is N* 2. 

Table 3 . 2 gives the numerical values for the mean time ~(N') until the MPu becomes 

faulty when 1/A I day and 1/a 180 days. This indicates that ~(N*) increases with 

c2/cl ' p and O. It is easily seen that the coverage p gives a greater influence on the 

mean time than O . Hence, to develop the reliability of the MPu, we should improve 

the coverage of a WDP. 

3.6 Conclusions 

Recently, several authors have studied and proposed many ideas for the improvement of 

the reliability of the MPu. We have investigated the system where one WDP monitors 

the behavior of the MPu and the others are in standby We have derived the mean 

time until the MPu becomes faulty and the reliability function by considering the mean 

times to error occurrences of the MPu and WDP, the coverage of a WDP and so on. 

Further, we have discussed an optimal number of WDPS which minimizes the expected 

cost . 

From the numerical example of the reliability function, it has been shown that it is 

effective to have at least one WDP when the system requires a high reliability. Further, 

the optimal number which minimizes the expected cost decreases with I /a, however, 

increases with c2 /cl ' Further, the coverage of a WDP gives a great influence on the 

improvement of the system. 
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Reset 

Figure 3. l: Outline of the model with N watchdog processors. 
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　　　　　　　1　　　　2　　　一一一　　ハ7－1　　　／V

　　　　　Figure3．2：「丘ansi豆on　diagr．am　between　systεm　states・
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Table3．1：0ptimal　number／V＊to　minimize　O（ノV）when1／λ＝・1day，p＝0．8，θ・＝0．8．

一　　　　　　　　　　一墨　　　　　一　　一　　　　　一　　　　■　　　　　　　　－

1／α i C2／C1

｛day〉 　10隔02 1031 104 　105　106
　　
　　7
10

30 1

l
l
　
　
　
　
2

1
　
　
　
　 4 5 6

l
l
　 7 8

60．1 11

2　　　　3． 4　　　　5 5 6

90 1
、

　　　　2 3 31 4
1
　
　
　
　
5

6

180． 1　　　　2
2』

3
。 3 4

． 5

365 　　　　1、

1
　
　
　
　
1

2 2 31

l
　　　　3

4
冒
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Table3．2：Numerical　values　for4（ノV＊）when1／λ＝1day，1／α＝180days・

　　　　　　　　　　　　　　　　　　　　　　　　　　　　（×106（sec。nds））

P
θ C2／C1

10 　　102 103 104 105 106 107

0．8

『o・8

1
　
　
0
．
4 23 0，430 　　0．430 0，430 0，430 0，430 　　0．430

0．9 0，423 0，431 0，431 0，431 10，431 0，431 0，431

10．99 0．423
　　　　　　I
l　O．43210，432 0，432 　O．432 0，432 　O．432

0．9

0．8 0，823 0，854 0，855 0，855 0，855 0，855 0，855

10・9 0，823 0，858 〇，860 0，860 0，860 0，860 0，860

卜
　
0 ．99 0，823 0．861

i
　
　
O ．863 0，864

［
　
　
0 ．864 0，864 0，864

0．99

旨
　
　
0

．8 7，156卜7．733 7，780 7，784 7，785 7．785 7，785

　　〇．9　　7．353 8，103， 8，181． 8，189 8，190 8，190 8，190

10．99 18，217
　　　　　　1

卜8．546 8，587 8．592 8．593 8，59318，593
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Appendix 

3.1. Mass functions Q~,j(t) (,i 1, 2, ･ . . , N; j 1,2, . . . , N, F) 

The mass functions Qa,3 (t) from state i at time O to state j at time t are given by the 

following equations: 

Q~,i (t) p e~ aud F ( u ) (c I , 2 , N) (A3 . I ) 
CJ 

oo QbF(t) ~Q(j-1)(t) * (1 - p) ot e~audF(u) + (1 O) (1 e au)dF(u) 
'l '~ 

j=1 

t oiO 

+ o a - ~(e~pu e~au (A3.2) - )dF(u) (i 1, 2, . . . , N l) 

oo t al3e _ ~e+1 Q!j-1)(t) * _ e~au)(1 - F('u))du (e pu ~; Q,,, (t.) 

~'i o a - p j= 1 

(i l, 2, . . . , N l), (A3.3) 

QN,F(t) ~QN,N (t) * (1 P) o e~audF(u) + o (1-e~au)dF('u) , (A3.4) 
j=1 

where the asterisk mark denotes the Stieltjes convolution, a(n) (t) (n I , 2, . . .) denotes 

the n-fold Stieltjes convolution of a distribution a(t) with itself and a(o) (t) ; I for 

t ~ 0,0 for t < O, i.e., a(n)(-t) - a(n-1)(t) * a(t), a(t) * b(t) fot b(t - u)da(u). For 

example, QN,F (t) is the probability distribution that when the N-th WDP is monitoring 

the MPu, the system transits to faulty state because of either case where errors of the 

MPu occur and a WDP cannot detect them although a WDP is normal or where errors 

of the MPu occur when a WDP is abnormal. 

3.2. Derivation of equation (3.10) 

Substituting f(s) A/(s + A) in (3.6), and for simplicity of the equatlon assummg 

x = a + A(1 - p), y ~ /3 + A, we have 
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3 A N-2 

hN(s) - ~ ' j=0 (s + x)(s + y) s + A ~ (s+ x)(s + A) ~ (s + x)(s + y)(s+ A) 

a ~O 
+ s + A ~ (s + x)(s + A) (s + x)(s + y) 

N-2 apO ' s p 
s + A (s + x)(s + y)]J[1 s + x ~ (s + x)(s + y)] 

j~) 

sp a pe N_ l +(1 s + x)[(s + x)(s + y)] 

s+ A I - ss_+Px Nj=~:[(s+x)(s+y) A apO Jj (N 1, 2, . . .). (A3.5) 

3.3. Derivation of RN(t) 

We can derive RN(t)(N O, 1,2, . . ' ) one by one by taking the LS inverse transfol m 

of hN(s) in (3.lO). 

(i) When N - O , evidently we have 

A 

Thus , 

Ro(t) = I - Ho(t) e~)Lt (A3.7) 
(ii) When N - 1, 

S PA 

h (s) ho(s) (s + x)(s + A) ' (A3.8) 
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Thusラ

　　　R・（孟）…1－H1（孟）一珊（諺）＋・フ評一”ε舷　　　，　　　（孟3・9）

where

　　　　　　　　Pλ

　　　・1……三一　　，　　　　　　　　　　　　　　　　（み3，10）
　　　　　　　α一λP

（iii）Whenノ〉＝2，

　　　　　　　　　　　　　　　　　spλαβθ
　　　ん2（5）ニん・（5）一　　　　　　　　　　　　　　　　（盈3．11）
　　　　　　　　　　　　　（β＋諮）2（s＋穿）（5＋λ）●

Thus，

　　　R2（孟）…1－H2（孟〉

　　　　　　　一R1（f）＋”1孟e一ω孟＋”2ε　孟＋免ノ3ε一4＋免ノ4ε蝉λ孟，　　　　　（み3．12）

where

物…一響（諮主λ＋穿主詔〉　　　　（乃a13）

・・2…響1（僧歪λ）・＋（穿壬∬）・1・　　　　（劇

　　　　　　　　　　Pλαβθ

　　　”3…一　　　　　　　　　　　　　　　　　　　（孟3．15）　　　　　　　（劉一竃）2（Ψ一λ）り

　　　晦…ρλαβθ一　　　　　　　　（五3．16）
　　　　　　（灘一λ）2（〃一λ）●

Similaユiy，when／V＝3，4，…，we　can　compute　R〈r（f）successively



3.4. Derivation of Roo (t) 

Taking N -> OQ in (A3.5), we have 

hoo(s) ~ ~i_+moo hN(s) 

oo s p 

s + A ~ (s + x)(s + y) s+x j=0 

A sp(s + y) l 
s + A ~ (s + x)(s + y) - ap6 

Thus, we can derive Roo (t) by taking the LS inverse transform of hoo (s): 

Roo(t) = I - Hoo(t) 

'y - wl R (t) + pA (wl - w2)(wl ~ A)e~wlt 

y-w2 _ . y-A _ At ~ (wl w2)(w2 - A)e w2t + (wl - A)(w2 A)e , 

where 

1 
[x + y + (x - y)2 + 4ape], wl = ~2 ' 

1 

~ ~[x + y (x y)2 + 4apO]. w2 -
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(A3.17) 

(A3.18) 

(A3.19) 

(A3.20) 





Chapter 4 

Optimal Nulnber of 
Microprocessor Units 
Watchdog Processor 

with 

This chapt,er considers a system with _iV microproces_.sor (uP) unit,s, where each pLP unit 

consists of uP and watchdog processor (~WDP): When errors of a uP have occurred, a 

~A7DP detects them and resets a ;~P to an initial state. The reset number is checked 

at constant time T. If more than K resets have been made at time T, a /hP becomes 

permanent fault and one of other /hP units in standby begins to operate. The mean 

time and the expected cost until system failure are derived. An optimal number N* 

which minimizes the expected cost is discussed. 

4.l Introduction 

Chapter 3 has considered the system where a main processor has several watchdog 

processors (W~DPs), and has shown that it is effective to have at least one WDP. 

Howe¥rer, many Inicroprocesso_r (llP) units which consist, of ~P and WDP have been 

recently used in actual flelds . This chapter considers the following system with N IhP 

units to improve its reliability by redundancy: Each /lP unit consists of /lP and WDP. 

When errors of a /hP have occurred, a WDP detects them with a certain probability 

41 
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and resets a /lP to an initial state. If a WDP cannot detect errors and the reset dose 

not succeed, the system fails. The successful numbers of resets are checked at constant 

time T. If mo~ re tha- n K reset~~5 have been Inade a~ t thne T, it is judged th'at a uP is in 

permanent fault, and one of other /hP units in standby begins to operate. The above 

procedures are repeated until all of N /hP units have become fault . 

For the above_ mode_.1, we de_rive_ thp_ mean time_ until_ sys-t,e_m failure_, 1_Ising the_ t,he_ory 

of Markov renewal processes [Osaki92] . Further, introducing the cost of a llP, we 

discuss analytically the problem to obtain how mar.y number of /lP units is optiinal. 

Finally, numerical examples are given when failure times of a /hP are exponential. 

4.2 Model and Analysis 

The system has N /hP units, where each unit cons.ists of /~P and WDP shown in Figure 

4.1. We assume that: 

( I ) Errors of a u P due to hardware errors and mistakes of memory access or control 

occur at a non-homogeneous Poisson process with an intensity function A(t) and 

a mean-value function A(t), i.e., A(t) = fot A(u)du. 

(2) A ~.7DP can detect errors of a uP ¥~ith_ probability p(O 4_ p ~ 1) and resets a /hP 

to an initial state. This probability p is called coverage of a WDP. A WDP works 

independently of a /hP and does not fail. 

(3) If more than K Iesets have occulred at tune ~1' where T is previously specified, 

we regard that a /hP is in faulty state, and switches over to one of other uP units 

in standby automatically with probability O(O < O ~ 1). Any switching times are 

neglected. On the other hand, if less than:1 K resets have occurred at time T, a 

uP flnishes one processing and returns to an initial state. 

(4) If a WDP cannot detect errors of a /hP or if it cannot be switched over from a 

/LP with fault to one of standby units, the system becomes failure. 



From assumption ( I ) , the probability that the j-th number of errors have exactly 

occurred during (O, t] is given by Pj(t) = {.[A(t)]j/j!}e~A(t)(j O, l, 2, . . .). Under the 

above as~~~'umptions, we define the following states of the system: 

(3 1 . 2, . . . , N). State j: The j-th uP unit begins to execute one processing ' 

State F: System failure occurs. 

The_. s_ yst,e_.m state_.s_ de_.fine_.d a,b~ove_. forrn a Markov re_.ne_wal proce_.ss whe_.re_. st,ate_. F is_ 

an absorbing state. Transition diagram between system states is shown in Figure 4.2. 

' ' ' . N. F) be one-step transition probabilities of Let Qij(/.)(i 1. 2, . . . . ./V; j 1. 2, 

a Markov renewal process. Then, the mass functions Qz,_i (t) from state I at tune O to 

state j at time t are: 

K-1 t 
~ IjP (u)dA(u) (~ 1 9 ~r) 
j=0 O 

~ ~: tpfP (~/)dA(u) (~ 1 2 N 1) (4 2) (n) 
Q , (t) ~ z+1 [Qa,~ (t)] * O 

77'=0 i=K o 
Qz,F(t) [Qz,e (t)] * L(1 - O) ~; tpfp (u)dA(u) ~; (n) r 

j=-K 
oo + ~ f t A(u)1/ (1 p)P (u)A(u)dulJ (~ l, 2, IV l) (4 3) 

3;~J(_ ~t pJ P' (u)d A (u) 
QN F(t) ~;[Q!~)(t)] * [ ' 3 

'rb=ci 

oo +~~t ~ A (u)py (1 p) P (u)A(u)du] , (4.4) 

where the asterisk mark denotes the Stieltjes convolution, a(n)(t) denotes the n fold 

Stieltjes convolution of a distribution a(t) with itself and a(o) (t) I for t ~ O, O for 

t < O, i.e., a(n)(t) _ a(n-1)(t) * a(t), a(t) * b(t) - fot b(t - 'u)da('u), and 

~1: t>T. 
A(t) - O : t ~ T, (4.5) 
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is the degenerate distribution placing unit mass at T, A(t) - I - A(t). For example, 

Q~,F(t) is the probability distribution that when the i-th /hP unit is operating, the 

system transits to faiilure state because of either case where the switch-over to one of 

standby units fails when more than K resets have occurred at time T, or where a WDP 

cannot detect errors of a /hP until time T. 

Let ip(s) be the Laplace-Stieltjes (LS) transform of any function (~(t). Taking the 

LS transforms of (4.1) - (4 4) we have 

K- l 

qa,~(s) ~; 1le~STpj(T) (i 1, 2, . . . , jV), (4.6) 
3=-o 

oo K-1p3e~sTp.(T) n-1 x 6 pje ST q~,~+ I (s) 3 oo _ . 
n=1 j=0 j=K 

(i - l, 2, . . . , N - 1), (4.7) 
oo K-l q F(s) ~__.___.1[~ n-1 J p7e~sT pj (T) 

r ~ p3e~sTp3 (T) + ~ e~stp3 (1 p)Pj(t)A(t)dt] X L(1 - e) L 

j=K j=0 O 
(i 1, 2, . . . , N - 1), (4.8) 

oo K-1 qN F(s) ~; [ ~ pje~sTpj(T)] n-1 

n=1 j=0 

e stp3(1 V)Pj(t)A(t)dtj . x [ ~; pje~sTp (T) + (4.9) ~ ･-
j=K j=0 O 

We derive the mean time ~(N) from the beginning of system operation to system 

failure. Let HN(t) be the flrst-passage time distribution frorn state I to state F. Then, 

we have 

HN(t) Q1'F(t) + Ql'2(t) * Q2,F(t) + . . . + Q1'2(t) * ' ' ' * QN-1'N(t) * QN,F(t). (4.lO) 

Taking the LS transforms on both sides of (4.10) and arranging them, we have 
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oo 
N_2 0~;pje STp (T') 

j [ 

hN ('~_ ) ~: 
K- 1 

e=1 1 - ~ p3e~STpj(T) 
j-=0 

oo 
(1 O)~~e~3Tpj(T) + ~; o e~3tpj(1 p)Pj(t)A(t)dt 

j-=0 3~=K 
x 
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K~ 1 
pJe sTpj(T) l-~ -

j=0 

whele ~;, I O Hence the mean time e(N) to system failure is 

oo 

e(N) - tdHN(t) 
1 - AN 
l-A B (N 1 2 ) 

where 
oo 

6 ~: I/Pj(T) 

A - j=K 
pc-1 , 1 ~ pipj(T) 
j=0 

T B ~ e~(1~r')A(t)dt 

K- 1 

l ~ IjPj(T) 
.7=0 

K- 1 
1 - ~ pje~STp (T) 

3=0 
oo 

O Ij~ 8Tp (T) ~' ~- j 

+ j=K N-l K- 1 
1 - ~; p7e~s7P (T) 

j=0 

~ pje~sTp (T) ~ ~; e~stp' (1 p)Pj(t)A(t)dt 

X f=K j=0 O (N 1, 2, ･ ･ ･), 

(4.11) 

(4.12) 

(4.13) 

(4.14) 



46 CHAPTER 4. OPTll~[AL NUM:BER OF ~~11CROPROCESSOR UNITS ... 

It can be easily seen that A - q,,,+1(O) in (4.7) and e(N) is increasing from B to 

B/(1 A). 

4.3 Optimal POlicy 

Let cl be the cost for a peP unit and c2 be the cost for system failure. Then, the 

expected cost C(N) per unit 0L time of the system with N /hP units is given by 

Ncl + c2 
C(N) - e(N) 

Ncl + c2 
(N l, 2, . . .). 

B 1 A 
We seek an optunal numbel N which munmizes C(N) in (4.15). From th~ inequal-

ity C(N + l) - C(N) > O, we have 

l - AN N > C2 (4.16) AN(1 - A) ~ cl 

Denoting the left side of (4.16) by L(N), we have 

L(N) L(N 1) I + AN > O (4.17) 
AN ' 

and 

1-A 

~l_>m* L(N) oo. 

Hence, L(N) is strictly increasing in N from (1 A)/A to oo. Thus, we have the 

following optilnal policy : 

(i) If ( I - A)/A < c2/cl' then there exists a flnite and unique minimum N' which 

satisfies (4.16). 
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.) (. ll If (1 A)/A ~: c2/cl' then V I In this case it Is evident that 

oo 
1 ~; pi p3 (T) 

1 A 1 3=0 + I l. 
A ~ ~ IfPj(T) oo 

j=K 

which is an increasing function of K. Thus, if K increases then the case of N* l 

increases. We can compute a minimum value K which satisfies (1 A)/A > c2/cl 

for the case where N* I . 

4.4 Numerical Examples 

We compute numerically the mean time ~(N) and the expected cost C(N) when errors 

of a uP occur at a Poisson process with constant rate A. Suppose that the coverage 

0L a WDP is p 0.8 - 0.99 the probability that the switch over from a /lP to other 

units in st,andby succeeds is O 0.9 - I .O, and the cost rate of system failure to a /LeP 

Is c2//cl ~ 102 - 104. Further, the interval time T of checks per the mean time l/A of 

-4 l0-1 and the upper limit number of resets errol occunences of a /hP Is AT 10 -

is K 2 - 4. 

Table 4.1 gives the optimal number N* which minimizes the expected cost C(N). 

This indicates that N* 's decrease with K, however, increase with p, AT and c2/cl' For 

example, when O 0.9, p 0.9, AT 10-2, K 3 and c2/cl 104, the optimal 

number is JV* 2. This also indicates that N*'s depend little on O and are almost 1 

for K ~ 4. Therefore, we can conclude that the system is enough to have only one 

unit when the reset number K takes ordinary values from 4 to 8. 

Figure 4.3 draws e(1) for l/A and p 0.8, 0.9, 0.99 when T I second and K 4. 

This indicates that ~(1) increases noticeably with p. That is , to develop the reliability 

of the system, we should improve the coverage of a WDP. 

Moreover, we compute a minimum value K for the case where N* I which satisfles 

(1 A)/A ~ c2/cl m Table 4.2. This indicates that these values increase with p and 
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AT. 

4.5 Conclusions 

It would be very important to evaluate and ixnprove the reliability of systerns with 

llP. This chapter has considered a redundant system with N /hP units to improve the 

reliability. Under the assumption that a uP is in faulty state if more than K resets 

have occurred at time T, we have derived the mean time and the expected cost until 

system failure. Further, we have discussed an optimal number N' which minimizes the 

expected cost. 

From the numerical examples , it has been shown that the optimal number is almost 

l for K ~ 4, and hence, the system is enough to have only one unit . Further, we have 

understood that the probability of coverage of a WDP gives a great influence on the 

improvement of the system. 
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Frgure 4 1 Outline of the model. 
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Table 4.1: Optimal number N' to minimize C(jV). 
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Table 4.2: Mmunum value K for the case where N* - I . 
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Chapter 5 

Reliability Evaluations of 

a Microprocessor System with 
Limit Processing Tirne 

This chapter considers reliability problems of a system with .'V microprocessor (/hP) 

units where each ,hP unit consists of /hP and watchdog processor: If the operating unit 

cannot fl~Lish one processing by errors until a limit time, it changes to one of standby 

units. The mean time and the expected number of processings until system failure are 

obtained. Using these results, the cost effectiveness is derived and an optimal number 

of /hP units which minimizes it is analytically discussed. Finally, numerical examples 

are given under suitable conditions. 

5 . I IntrOduct iOn 

A Iarge number of microprocessors (/hPs) have been widely used in many practical 

flelds. A watchdog processor (WDP) is the most convenient coprocessor to monitor 

the behavior of a /lP since it is simple and low-priced. 

Yasui, et al. (1994) [YNH94] considered a /lP system with watchdog timer (WDT) 

which is simplifled a WDP function. They also showed that it is effective to have a 

WDT for the system which demands a hig"h reliability. 

55 
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This chapter considers the reliability problems of a system with limit processing 

time: The system consists of N uP units where each 11:P has a WDP. When errors of a 

,lP have occurred, a WDP detects them and resets a /lP to an initial state. Otherwise, 

the system goes to failure. If the operating unit cannot flnish one processing until a 

limit time T, a /hP becomes faulty and its unit changes to one of the standby units. 

The above procedures are repeated until all of N units have become faulty. 

The mean time and the expected number of processings until system failure are 

obtained. Using these results, the cost effectiveness is derived and an optimal number 

of /~P units which minimizes it is analytically discussed. Finally, numerical exampies 

are grven. 

5.2 MOdel and AnalySiS 

The system has jV /hP units where each unit consists of /hP and WDP shown'in Figure 

5.1. We regard that a /lP becomes faulty if it does not finish one processing until a 

limit time T. 

( l) A kbP repeats one time of processing which takes the total time of a main pro-

cessing and an initial processing for preparation to execute a main processing. 

Its initial processing and main processing need the respective times according to 

exponential distributions (1 e~at) and (1 - e~pt.). 

(2) Errors of a /hP occur according to a general distribution F(t) with flnite mean 

1/A. 

(3) A WDP can detect errors of a /hP with probability p(O < p ~ 1) and resets a ,hP 

to an initial state of a main processing. This probability p is called coverage of a 

WDP. A WDP works independently of a kbP and does not fail. 

( 4) If the operating unit cannot flnish Qne processing by errors until a limit time T, it 

changes to one of the standby units. The probability that the switch-over from 



a /hP unit to other units in standby succeed is O (O < O < I ) , and its switch-over 

time is constant v . 

(5) If a WDP cannot detect errors of a /hP, if it cannot be switched over from a faulty 

/LP to one of the standby urlits or if errors of a /hP occur before a /lP finishes 

an initial processing, the system becomes failure. Besides, if the N-th operating 

unit cannot finish one processing until a limit time T, the system also becomes 

f ailure . 

Under the above assumptions, we define the following states of the system: 

State ~ The i-th /lP unit begins to execute one processing (i l, 2, ･ ･ ･ , N). 

State F: System failure occurs. 

The system states deflned above a Markov renewal process [Osaki92] where state 

F is an absorbing state. Transition diagram between systeITL States is shown in Figure 

5.2. We deflne the distribution U(t) of a limit time T and the distribution V(t) of the 

processing time of switching as the following functions : 

l: t>T, 
U(t) O : t < T, (5.1) 

_ l: t.~v, 
O: t<v. 

Let Q,,j(t)(i I , 2, . . . . N; j 1. 2. . . . , N, F) be one-step transition probabilities 

of a Markov renewal process and ip(s) be the Laplace-Stieltjes (LS) transform of any 

function ~~(t) I e ip(s) foo e std~(t) fol Re(s) > O. Further, we put that 

hT(s) OT e~(s+p) dF(t) (5.3) 

Then, from Appendix 5 . I , 
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a/3[1 - f(s + a)] I - F(T)e~('+p)T _ hT(s) 
q,,,(s) (s+a)(s+p) ' l phT ( s) 

q,,,+1 (s) aO(s + p)[1 - f(s + a)]e~pTe~'(T+~)F(T) 

qi,F(S) 

(s_' + oi)(s + p)[1 - phT(s)] 

ap[1 - f(s + a)][1 F(T)e~('+p)T _ hT(s)] 

(s + p)[1 - phT(s)][a + sf(s + a)] 

- (y(s + p)[1 f(s + a)] 
x [1 - hT(s) - (1 O)e~pTe~'(T+~)F(T)] 

･ N) , (i 1,2, ･･, 

(5.4) 

qN,F(s) (s + a)(s + p)[1 phT(s)] 

- oip[1 - f(s + a)][1 - F(T)e~('+p)T _ hT(s)] 

Note that qi,3(s) do not depend on i in (5.4) - (5.6). 

We derive the mean time e(N) to system failure. Let HN(t) be the first-passage 

time distribution from state I to state F. Then, we have 

HN(t) Q1'F(t) + Q1'2(t) * Q2,F(t) + . . . + Q1'2(t) * ' ' ' * QN-1'N(t) * QN,F(t). (5.8) 

Hence the mean time e(N) to system failure is 

d ~ e(N) - tdHN t lim hN(s)] ~ o ( ) *-o ds [~ 
1 

1 -q[D(1 -qN) + E(1 qN 1)] (N 1 2 ) (5.9) 

where 

(s + a)(s + p)[1 phT(s)] 
a/3[1 - f(s + a)][1 - F(T)e~('+p)T hT(s)] 

('~'_' + a)(,'_' + p)[1 - phT(s)] f(s + o() 

+ a(s + p)[1 - f(s + a)] 

x [(1 p)hT(s) + e~('+p)TF(T)] 

(,i 1, 2, ･ , ･ ･ N - l), 

(5.5) 

(i 1, 2, ･ , ･ ･ N - 1), 

(5.6) 

(5.7) 
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q -

D 

E 

q,,~+ I (O) 

O[1 - f(c~)]F(T)e~pT 

l phT(O) - [1 f(a)][1 - F(T)e~pT _ hT(O)]' 

~[1 - phT(O)] + ~[1 - hT(O) - F(T)e~pT] [1 - f(a)] 

1 - phT(O) - [1 - f(a)j[1 - hT(O) - F(T)e~pT] 

vF(T)e~pT[1 - f(a)] 

1 phT(O) [1 - f(a)][1 - hT(O) - F(T)e~pT] 

Note that O <( q < I , and for N 1, oo, we have, respectively, 

, 

, 

(5.lO) 

(5.11) 

(5.12) 

e(1) D, (5.13) 

D+E ~(oo) 
1-cl 

Next, we derive the expected number of processings to system failure. The expected 

number JA~1,i(t) of visits to state 'i until time t, when the system starts from state i at 

time O, is given by the following renewal equation: 

M,1(t) Qz,i(t) * [1 + Mz(t)] (i 1, 2, . . . 

Thus, the LS transform m(s) of the expected number M(t) 

system moves from state I at time O to state F is given by 

, N). 

of processings 

(5.15) 

until the 

m(s) 7nl(s) + q 2(s)m2(s) + ' ' ' + ql'2(s)q2,3(s) ' ' ' qN-1 N(s)mN(s) 

N 
~Tnl(s)[qb z+1(s)]3 1 (5.16) j-= 1 

where n7.1(s) mi(s_') (i 1,2, . . . , N). Therefore, from qq,z+1(O) - q, we derive the 

expected number M of processings until system failure in the following equation: 

M _ th_,~joo M(t) Iimm(s) 
s-o 
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N 
~ ml (O)qj- 1 

j= 1 

[1 f(a)][1 - F(T)e~pT' _ hT(O)] 

1 phT(O) [1 f(a)][1 F(T)e~pT _ hT(O)j 
- Oe~pT[1 - f(oi)]F(T) 

N x I ee~pT[1 - f(o()]F(T) (5.17) 
1 ph7'(O) - [1 f((Y)][1 - F(T)e~pT _ hT(O)] ' 

5.3 Optlmal POllcy 

Generally, the expected cost would be mutually exclusive against the effectiveness. 

We discuss an optimal policy by introducing the concept of cost effectiveness: Let cl 

be the acquisition cost for a /hP unit and c2 be the cost for system failure. Then, 

we assume that the expected cost per unit of time of the system with N uP units 

is d(N) _ (Ncl + c2)/e(N), and the effectiveness which is the expected number of 

processings per unit of time is M/e(N). Then, we define the cost / the effectiveness as 

the following equation: 

C(N) Ncl + c2 

C(N) hl jld ' (5.18) ~(N) 

That is, C(N) denotes the expected cost per one time of processing. From equation 

(5.17), we have 

Ncl + c2 

~; n~t,1 (O)qj- 1 

j-= 1 

Note that 

A3 _ ml(O)qj-1 

is strictly decreasing in j since O < q < I , and hence lim3_oo A3 O 

(5.20) 
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We seek an optimal number N' which minimizes C(N) in (5.19). From the inequal-

ity C(N + 1) C(N) ~ O, we have 

1 N ~Aj N > c2 (5.21) N+1 j=1 

Denoting the left side of (5.21) by L(N), we have 

1 

L(1V) - L(N - 1) ~ Aj ~ AN > O (5.22) j=1 AN+1 
A1 _ 1 1 1 > o 

N 
~ Aj 

L ( Qo ) Iim j= I N 
N-oo AN+1 

> Iim A1 1 oo . (5.24) 
- N-* AN+1 

Hence. I.(N) is strictly increasing in N from L(1) to oo. 

Thus, we have the following optimal policy: 

(i) If L(1) ~ c2/cl' l'e., q < cl/(cl + c2) then N' 1. 

(ii) If L(1) < c2/cl' i.e., q > cl/(cl +c2) then there exists a flnite and unique minimum 

N'(> 1) which satisfies (5.21). 

5 4 Numerlcal ExampleS 

We compute numerically the optimal number N* which minimizes the cost / the effec-

tiveness C(N). 

Suppose that errors of a uP occur according to an exponential distribution F(t) 

l - e~At and the mean main processing time 1/p of /lP is a unit time of the systeln. 

Further suppose that the mean tune to elrol occurrences Is (1/A)/(1/p) 3600 -
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3600 x 24 (when 1/~ I second, 1/A corresponds to I - 24 hours), the mean initial 

processing time is (1/a)/(1/p) l, the mean processing time of the switching of the 

/lP unit is v/(1/p) 11(30 x 104). Moreover, the probability that the switching of 

uP unit succeeds is O 0.8 - 0.99, the coverage of a WDP is p - 0.8 - 0.99, the 

acquisition cost cl for a uP unit is a unit of cost and the cost rate of system failure for 

a uP unit is c2/cl 10 - 103. 

Table 5.1 gives the optimal number N' which minimizes the expected cost C(N) 

when a limit processing time T of /lP is 10 - 20 tunes of the mam processmg time 

l//3 of /hP, i.e., T/(1//3) /3T 10 - 20. This indicates that N' decreases with 

pT, however, increases with 1/A, p, O and c.'2/cl' For example, when (1/A)/(1/p) 

3600 x 24, p 0.9, O 0.9, pT - 15 and c2/cl 102, the optimal number of uP 

units is N* - 2. This also indicates that N* depends on I /A, p and O when pT takes 

small values, however, when /3T ~ 15, N* depends little on them and N' is almost 

l - 2. 

Next, Figure 5.3 draws C(N) for N and gives the optimal number N' when (1/A)/ 

(1/p) 3600, 3600 x 24, p 0.8, O 0.8, pT 10 and c2/cl lO. This indicates 

that C(N) decreases noticeably with 1/A. We can consider that N' increases with I IA 

in Table 5.1 so that the processing number of uP within a limit processing time pT 

increases and the expected cost decreases remarkably. That is, from Figure 5 .3, as the 

/hP unit becomes advanced, it seems that the optimal number N * becomes large so as 

to decrease the expected cost for the effectiveness. 

5.5 Conclusions 

We have considered the reliability problems of a system with N uP units. Under the 

3ggLL~aptiOn that ~ pF ig ill faUlty gtate if it does not finish one processing until a 

limit time T, we have derived the mean time, the expected number of processings until 

system failure by considering the mean time to error occurrences of a llP, the coverage 

of a WDP and so on. Further, introducing the concept of cost effectiveness , we have 
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discussed an optimal number which minimizes the expected cost for the effectiveness. 

From the numerical examples , it has been shown that the optimal number JV* 

which minimizes the cost / the effectiveness decreases with pT, however, increases 

with 1/A, p, O, and c2/cl ' and N* depends little on them and N* is almost I - 2 

when pT ~ 15. Further, an interesting consequence has been obtained that when pT 

is small comparatively, as the /lP unit becomes advanced, the expected cost per unit 

of processing decreases, and oppositely, the optimal number N* increases. 
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Figure 5.3 : Cost effectiveness C(N) for N and N* when (1/ ~)/(1/ ~ )=3600, 3600 X 24 

p=0.8, e ~.8, p T=10 and c2lcflO. 
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Appendix
5．1．Mass血nctions　C，，フ（孟）（σ二1，2，…，、Nlブ＝1，2，…，1V，F）

The　mass　f加ctions（～¢，ブ（孟）from　state¢at　time　O　to　stateゴat　timeオare　given　in　the

follo輌ng　equations：

鱗（舌）一晒脚1＊／善レ個）ひ（櫛）1（κ一1）＊倉（・ん）σ順の／

　　　　　　　　　　（乞＝1，2，…，N），　　　　　　　　・　　　　（乃5。1）

砺＋1（孟）薄鯛（3　1〉＊1イア（賜脚1＊｛議レ倉（u剛州囲

　　　　　　　　　　＊［イア（％酬咽1｝＊［θy（孟）1（乞一1・2・…胴）・（ハ5・2）

　　　卿一量1㈱1（コ｝1）＊1か（銘剛］

　　　　　　　　　ブ＝1

　　　　　　　　　　＋毒團（ゴー’）＊睡）4姻1轍加（u）4F（u）1（κ一1）

　　　　　　　　　　＊｛（1－P）イ万（α卿F（鋤）＋［μ剛4U（u）］＊［（ト・）V（孟）1｝

　　　　　　　　　　（琶＝1，2，…，N－1），　　　　　　　　　　　（A5・3）

　　　Q泥F（乙）一§［伽（孟）1（2－1）＊1か（硬ん剛1

　　　　　　　　　ノ＝1

　　　　　　　　　　＋毒［伽（孟）1（フー1）＊［倉（脚）1＊嵩IP倉（？乙）万（％剛1（ん一1）

　　　　　　　　　　＊｛（1－P）倉（？る剛4F（？る）＋話むア（？あ酬U（u）1・　（み5・4〉
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where the asterisk mark denotes the Stieltjes convolution, a(n) (t) denotes the n-fold 

Stieltjes convolution of a distribution a(t) with itself and a(o) (t) ~ I for t ~ O, O for 

t < O, i.e., a(n)(t) ~E a(n-1)(t) * a(t), a(t) * b(t) ~E fot b(t - u)da(u). For example, QN,F(t) 

is the probability distribution that when the N-th /hP unit is operating, the system 

transits to failure state until time t because one of the following three cases : (i) Errors 

of a uP occur before an initial processing finishes , (ii) a WDP cannot detect errors of 

/hP, and (iii) one processing of /lP does not finish until a limit processing time. 





Chapter 6 

Reliability of 

a Multi-Microprocessor System 
with Complicated Switching 

This chapter considers a system with N TMR (Triple Modular Redundancy) units 

in which each unit consists of microprocessor and watchdog processor, and a faulty 

TMR ur~it is switched over to a new one. The mean time to system failure and the 

expected cost are derived, using Markov renewal processes. Optimal numbers N* 

of TMR units which maximize the mean time and minimize the expected cost are 

aitlalytically discussed. Finally, numerical examples are given. 

6.l Introduction 

In this chapter, we consider the following system with N TMR (Triple Modular Redun-

dancy) units to improve its reliability: A /lP unit consists of microprocessor (lhP) and 

watchdog processor (WDP), and each TMR unit consists of three /hP units with ma-

jority voting function. When errors of 11Ps have occurred, a WDP detects them with 

a certain probability and resets a uP to its initial state. This probability p is called 

coverage of a WDP. Three uP units of a TMR unit make the same one processing, 

and compare the results with each other at a specified time T. This is automatically 
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switched over to a new TMR unit in standby in the following three cases: (i) More 

than two results do not agree, (ii) more than two processings are not completed until 

time T, or (iii) one /~P unit becomes faulty. 

It has been well-known that even if a system consists of redundant units, its re-

liability often decreases because the quantities of hardware such as detecting faults 

and switching circuits increase [Nanya9l]. In this chapter, we regard the increase of 

units as that of complexity, and introduce the measure of system complexity where its 

reliability decreases as the number of urxits increases. 

We derive the mean time and the expected cost until system failure, using the theory 

of Markov renewal processes [Osaki92] . Optimal numbers N' of TMR units which 

maximize the mean time and minilnize the expected cost are analytically discussed. 

Numerical examples are given and some useful discussions for these results are made. 

6.2 MOdel and AnalySis 

A /1P unit consists of /hP and WDP, and the outline of the model is drawn in Figure 

6.1. 

6.2.1 AnalySiS of a /~P unit 

A 11,P unit repeats one processing which needs a random time according to an expo-

nential distribution G(t) I - e~/It . We assume that: 

(1) Errors of a /hP occur according to an exponential distribution F(t) I e~At 

(2) A WDP can detect errors of a /lP with probability p (O <~ p ~ I ) arld resets a llP 

to its initial state. 

(a) If a WDP camot detect errors with probability (1 - p) , a /hP becomes faulty. 

(b) Reset times are neglected. 

(c) A WDP works independently of a /lP and does not fail. 
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Under the above assumptions , we deflne the following states of a ktP unit : 

State O: A /lP begins to operate. 

State S: A /hP completes one processing. 

State E: A /LP becomes faulty. 

The states deflned above form a Markov renewal process where both states S and 

E are an absorbing state. 

Let Qo,,j (t)(j O, S, E) be one-step tranisition probabilities of a Markov renewal 

process. Then, we have following equations: 

Qo,o(t) p G(u)d F('u) , (6.1) 
Qo,s (t) t F(u)d G(u) , (6. 2) 

o 

(1 p) ot G(u)dF('u). 

From equations (6.1) - (6.3), the transition probabilities Po,j(t) that it is in state j 

(j O, S, E~') at time t when a pcP unit is in state O at time O are given by 

Po,o(t) I Qo,o(t) Qo,s(t) Qo,E(t) + Qo,o(t) * Po,o(t), (6.4) 

po,s(t) Qo,s(t) + Qo,o(t) * Po,s(~t), (6.5) 

Po,E(t) Qo,E(t) + Qo,o(t) * Po,E(t), (6.6) 

where the asterisk mark denotes Stieltjes convolution, i.e., A(t) * B(t) - fot ~(t -

u)dA('u). Then, arranging above equations, we have the following equations: 

Po,o (t) e~[A(1- P)+u]t (6.7) 
l/ [A(1 P)+u]t). 

Po,s(t) A(1 p) + /h (6.8) (1 e~ ~ 

Po,E(t) (1 p)A (1 e~ ~ (6.9) [A(1 P)+uIt), 

A(1 p) + I/ 

where it is evident that Po,o(t) + po,s(t) + po,E(t) 1. 
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6 2.2 Analysis of N TMR units 

Each /lP unit of a TMR unit repeats the same processing, and has to complete one 

processing until a specifled time T' to compare its result . It is assumed that the prob-

ability which the result of /hP unit is correct is a(O < c~ ~ l). It is judged by the 

voter of a TMR unit that if more than two results are correct , they are correct, and 

otherwise, they are not . The system consists of N TMR units where one is operating 

and the others are in standby. 

(3) If more than two results do not agree, one unit becomes faulty, or more than 

two processings are not completed until time T, then an operating TMR unit is 

switched over to one of other units in standby. 

(4) If more than two pbP units are faulty at time T or if a faulty TMR unit cannot be 

switched over to one of standby units, then the system becornes failur~. 

The quantities of hardware of detecting faults and switching circuits would increase 

in proportion to the number N of TMR units. That is, the quantities of hardware of a 

whole system increases by those of detecting faults and switching circuits, adding to the 

number of TMR units. In this chapter, we deflne V(N) as the measure of complexity, 

which is given by the reliability of a TMR unit and the increased quantities of hardware 

[IS76j . 

Let Ru be the reliability of a TMR unit and a (a ~ O) be the rate of quantities 

of hardware of detecting faults and switching circuits for those of a TMR unit . Then, 

we assume that the reliability of complexity for N TMR units is V(N) - (R~)N(N 

l,2, ･ ･ ･). Evidently, when both N and a increase, V(N) decreases, and hence, the 

mean time to system failure decreases . 

Under the above assumptions , we define the following states of the system: 

State ~ The ~ th TMR unit begms to opelate (c 1 2, ･ ･ ･ , N). 

State F: System failure occurs. 



The transition probabilities qi,j from state 'i to state j of the system states above 

are given by the following equations : 

~ q.,i+1 ~;[A(T)]k-1 [1 A(T) - B(T)]V(N) (i 1, 9_, ' ' ' , N l), (6.10) 
k=1 

" q,,F ~[A(T)]k-l{B(T) + [1 A(T) - B(T)]V(N)} (i 1,2....,N- 1), 
k= 1 

(6.ll) 

* 
qN.F ~~[A(T)]k-1 [1 - A(T)], (6.12) 

k= 1 

where 

[a3 + 3c~2(1 a)] [Po,s(T)]3 + 3ct2[Po,s(T)]2Po,o(T), 

B(T) E 3[1 - Po,E(T)][Po,E(T)]2+[po,E(T)]3, (6.14) 

and A (T) is the probability that a TMR unit completes one processing correctly at 

tinle T, B (T) is the probability that nlore than two units are in faulty state at time 

T', and V(N) = I V(N). 

6.2.3 Mean tlme to syStern failure 

We dcrive the mean time eF(N) from the beginning of system operation to system 

failure. The expected processing number Mi.F of a TMR unit until transition fronl 

state i at time O to state F without tran~*ition to other states i*~ given by 

* Mi,F ~; k[A(T)]k-l{B(T) + [1 A(T) B(T)lV(N)} 
k=1 

B(T) + [1 A(T) B(T)]V(.'V) (i 1, 2, . . . , N - 1), (6.15) 

[1 - A(T)]2 

" MN.F ~; k[A(T)]k-l[1 - A(T)] 
h==1 

1 
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Hence, the mean time eF(_~r) to system failure is 

N j-1 ep'( N) ~ jT( 11 q,,,+1 ) Mj'F 

3=1 *'=1 

T N 1 - A(T) ~[DV(N)]J-1 (N 1, 2 ) (6.17) 
j=1 

where n"~_=1 ~ I and D [1 - A(T) - ~(T)] /[1 - A(T)] which is the probability that 

a TMR unit is switched over to one of standby units at time T. 

6.3 Optlmal POllcy 

Suppose that Rf~ e~p and V(N) e~pN(p ~ O), where ~ a In(1/I~) is a parameter 

of complexity and represents the failure rate of switching. Then, we discuss an optimal 

number N' which maximizes eF(N) in (6.17). 

We put formally that 

eF(N) - I -A(T)eF(N) 

T 
N 
~(De~pN)3-1 (6.18) 
j=1 

and seek N' which maximizes ~F(N). ' It Is evident that for p > o, 

-- I - DNe~pN2 
. lim 

1. 

N-- I - De~pN 

From the inequality ~~~F(N) ~ e~F(N + l), we have 

DNe~pN(N+1) ~;{(De~pN)j-1 [De~p(N+1)]3 } > I (6.21) 
j=1 

Denoting the left side of (6.21) by L1(N), we have 

1 N~ 1 L1(N) 1_1(N l) ~; (De~pN)3[1 e p3 p(N-j+1) + e~pN] DNe~ pN(N+1) 
j=1 



l N- 1 > DNe~pN(N+1) ~ (De~pN)3(1 e~pj)[1 - e~p(N-j)] > o, (6.22) 

j=1 

an d 

O, 

I.1(oo) Iim ~;{(De~pN)j-1_[De~p(N+1)]3 } N-oo DNe~pN(N+1) 
j=1 

> Nli_>moo epN(N+1)[e pN e~p(N+1)] oo. (6.24) 

Thus, there exists a finite and unique minimum N* (1 < N* < oo) which satisfles 

(6.21). 

Next, we discuss an optimal policy which minimizes the expected cost. Let cl be 

the cost for system failure and c2 be the cost for a TMR unit. Then, the expected cost 

C.'(N) per unit of time of the system with N TMR units is given by 

cl + Nc2 

C(N) = ~F(N) ' (6.25) 
We seek an optimal number N* which minimizes C(N) in (6.25). From the inequal-

ity C(N'+ 1) - C(N) ~ O, we have 

r cl 1¥ r¥ DNe~pN(N+1) ~; {(De~pN)3 [De~p(N~-1)]3} + ~ (De~pN)3 N ~ :; ~ +Jv/ 
c2 j=0 

(6.~96) 

Denoting the left side of (6.26) by L2(N), we have 

L2(N) - L2(N - 1) 

N-2 l cl ( ' + N) ~ (De~pN)j(1 e~p3)(1 De~p(2N-j)) 
DNe~pN(N+1) c2 j-=0 

N- 1 
+(De~/3N)N-1(1-e~p(N-1)) + ~;(De~pN)J(1 De~2pN) > O, (6 27) 

j=0 

and 

1 - De~2f3 

I.2(1) De~2p ' (6.28) 
L (oo) ~lLmoo L(N) oo. (6.29) 
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Hence, L2(N) is strictly mcreasrng m N from L (1) to oo Thus we have the followmg 

optimal policy: 

(1) If L2(1) < cl/c2 then there exlsts a flmte and umque nunimum N'(> l) which 

satisfles (6.26). 

(ii) If L2(1) ~ cl/c2, then N' 1. 

Finally, we consider the special case where p O and V(N) 1, i.e., we do not 

consider the complexity of system. In this case, the mean time to failure is 

~F(N) T (1 DN), (6.30) B(T) 

which is strictly increasing in N. Hence an optimal N' which maximizes eF'(N) tends 

to inflnity. 

Further , the expected cost is 

C(N) B(T) cl + Nc2 (6.31) 
T I DN ' 

From C(N + l) > c(N), we have 

1 N-1 
DN ~; D3 - ~ > C1 (6.32) ~ c2 3=0 

The left side of (6.32) is strictly increasing from 1/D I to oo. Thus, there exists a 

finite and unique minimum N'(1 < IV' < oo) which satisfies (6.32). 

6.4 Numerical ExampleS 

We compute numerically the meaJ:1 time eF(N) and the optimal number N' which 

minimizes C(N). Suppose that the mean processing time I //h of /LP is a unit of time 

of the system and the mean time to error occurrences is (1/A)/(1/u) 3600 x 24. 

Further, the coverage of a WDP Is p O 8 - O 99 the probability that the processmg 
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lesult Is conect is a 0.999 and the cost rate of system failure for a TMR unit is 

cl /c2 1 - 5. 

Table 6.1 gives the optimal number N* which minimizes C(N) when p 0.9, IhT 

10. For example, when p 0.05,cl/c2 2, the optilnal number of TMR units is 

N* 3. This indicates that N* decreases with /~, i.e., the nurrLber of TMR units has to 

be small as the system becomes more complex. However, even if the system becomes 

more redundant, it is economical for small p. Further, N' increases with cl /c2. That 

is, if the cost of system failure increases, N' has to be large to prevent system failure. 

Table 6.2 gives the mean time to failure ~F(N) for N and p when p 0.9 and 

,hT lO, where an asterisk mark denotes the maximum value for each p. For example, 

when /3 0.1, the mean time to system failure reaches a maximum at N 4, and 

then, ~F(4) 3.587 x 106. This indicates that ~F(N) decreases with p for the same 

N, and optimal N* which maximizes ~F(N) also decreases with p. This has the same 

tendency aJS that of Table 6.1. When cl I and c2 O in (6.25), C(N) 1/eF(N), 

and hence, the optimal policy which minimizes C(N) is equal to the same problem 

which maximizes PF(N). It is of interest that optimal N* of Table 6.2 corresponds to 

that of Table 6.1 for cl /c2 oo, and gives an upper limit number of TMR units. 

Figures 6.2 and 6.3 draw ~F(3) for /hT when p 0.8. 0.9, 0.99, p 0.05, and p 

0.9,/3 10-1, 10-2, l0-3 respectively, Figure 6.2 indicates that eF(3) increases with 

P, IhT, however, Figure 6 .3 indicates that it decreases with ~ and nearly converges to 

the value of p l0-3. It is easily seen that the coverage p gives a greater influence on 

the mean time than /3. Hence, to develop the reliability of the system, we should more 

improve the coverage of a WDP. On the other hand, we can also estimate the coverage 

p and the parameter p of complexity from Figures 6.2 and 6 .3, respectively, when the 

processing limit time /1T and the mean time ~F(N) are given. 

Further, noting that p a In(1/Ru) ' we can see in Table 6.1 that when Ru increases, 

/3 decreases, and hence, N' becomes large. Similarly, when a increases, /3 also increases 

and N* becomes small. 
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5 Conclusions 

,,, 

We have considered the reliability of a system with N TMR units, and have derived the 

mean time to system failure and the expected cost . We have introduced the concept 

of complexity, froln the viewpoint of complicated switching of the system, and have 

discussed optimal numbers of TMR units. It has been shown from the numerical 

examples that the optimal number decreases with the parameter p of complexity, and 

increases with the cost rate cl /c2 of ~;c~ystem failure. 

Further, it has been shown that the optimal number decreases with the rate of 

quantities of hardware of detecting faults and switching circuits for those of a TMR 

unit, and increases with the reliability of a TMR unit. Thus, we could design more 

redundant systems with high reliability as the reliability of each unit develops and the 

complexity becomes small . 
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Chapter 7 

Optimal Reset Number of 
a Microprocessor System with 
Network Processing 

This chapter considers the maintenance problem for improving the reliability of a mi-

croprocessor (lhP) system with network processing. After the system has made a 

stand-alqne processing, it executes successively a communication procedure of a net-

work processing. When either /hP failures or application software errors in the system 

have occurred, a ptP is reset to the beginning of its initial state and restarts again. The 

reliability quantities such as the mean time' to success of a network processing and the 

expected reset number are derived, using the theory 0L Markov renewal processes. An 

optimal reset number, which minimizes the expected cost until a network processing is 

successful, is analytically discussed. Numerical examples are finally given. 

7.l Introduction 

As a computer network technology has remarkably developed, microcomputers (uPs) 

which form a data terminal equipment (DTE) in a comrnunication network have been 

used in many practical fields . Recently, a new communication network combining 

the information processing and communication has played an important role as the 

87 



88 CHAPTER 7. OPTIMAL RESET NUM:BER OF A MICROPROCESSOR ... 

infrastructure in the information society has developed. Therefore, the demand for 

improvement of reliabilities and functions for devices of a communication network have 

greatly increased[On096, Akiyama97] . 

In fact, a ,hP which is one of vital devices of a communication network often fails 

through some faults due to noise, changes in the environment and programming bugs. 

Hence, it is necessary to make the preventive maintenance for occurrences of such errors. 

Generally, when we consider the reliability of the system on an operational stage, we 

should regard the cause of error occurrences of a /lP as faults of software, such as 

mistakes of operational control and memory access , rather than faults of hardware. 

That is, when errors of a /lP have occurred, it would be effective to recover the system 

by the operation of reset [Nanya91]. 

This chapter considers the maintenance problem for improving the reliability of a 

,lP system with network processing: After the system has made a stand-alon~ process-

ing, it executes successively communication procedures of a network processing. When 

either uP failures or application software errors in the system have occurred, a /lP is 

reset to the beginning of its initial state and restarts again . Most reliability evaluation 

models of a /hP system until now have assumed that both errors of a /hP and failures of 

the data transmission occur unlimitedly [YMN91, YNM92, SNK92, NYS93, YNS95] . 

This chapter assumes that if the reset due to errors has occurred N times intermit-

tently, then a /hP interrupts ~ts processing and restarts again from the beginning of its 

initial state after a constant time. That is , if the reset has occurred frequently, the sys-

tem has latent faults, and makes the preventive maintenance to check the operational 

environment and to eliminate errors. 

We derive the reliability quantities such as the mean time and the expected reset 

number until a network processing is successful. Further, we regard the losses which 

are the times for the reset and the interruption of processing and for the maintenance 

to restart the system as expected costs, and discuss optimal policies which minimize 

them. Numerical examples are finally given. 
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7.2 MOdel and AnalysiS 

We pay attention to only a certain DTE which consists of a workstation or a personal 

computer and connects with some networks, and consider the problem for improving 

its reliability. 

Suppose that errors of a uP system occur according to an exponential distribution 

F(t) - I - e~'Lt . If errors of a /~P have occurred, a uP is reset to the beginning of its 

initial state and restarts again. It is assumed that any reset times are neglected. 

(1) After a /hP begins to operate, it executes an initial processing immediately and a 

stand-alone processing. 

(2) The times for an initial processing and a stand-alone processing have a general 

distribution V(t) with finite mean l/v and an exponential distribution A(t) 

1 - e~at respectively. 

(3) After a /hP completes a stand-alone processing, it begins to execute a network 

connection processing: 

(a) A connection processing needs the time according to a general distribution 

B(t) with flnite mean 1/p and fails with probability ~/ (O ~ ~/ < l). 

(b) If a connection processing has failed, a pbP executes the same processing 

again after a constant time ~~) where W(t) ~: O for t < ~~; aJ:Id I for t > tL'. 

(4) After a connection processing has been successful, a /hP executes a network pro-

cessing. 

(c) A network processing needs the time according to a general distribution U(t) 

with finite mean 1/~/', and is successful with probability I if it has not failed. 

(5) If the N-th reset has occurred since a /1P begins to operate, once it interrupts the 

processing, and restarts again from the beginning after a constant time //, where 

C.'(t) O for t < // and I for [. ~ Ih' 
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Under the above assumptions , we deflne the following states of the system: 

State O: An initial processing begins. 

State l: A stand-alone processing begins. 

State 2: A stand-alone processing is completed and a network connection processing 

State 3: A network connection processing succeeds and a network processing begins. 

State F: A processing is interrupted. 

State S: A network processing succeeds. 

The system states deflned above form a Markov renewal process [Osaki92] ~here state 

,~ is an absorbing state. Transition diagram between system states is shown in Figure 

7. I . 

Let Qi,3 (t) (,i O, l. 2, 3; j O, 1, 2, 3. S~') be one-step transition probabilities of a 

Markov renewal process. Then, mass functions Q.,j(t) from state i at time O to state j 

at time i. are: 

Qo,o (t) V (u)d F (u ) , (7. I ) 
Qo. I (t) F (u) d V (u ) . (7. 2) 
Q1,0 (t) t A(u)d F(u) , (7.3) 

Q1,2(t) F(u)dA(u) , (7.4) 
oo 

Q2,0(t) ~ X(3-1) (t) * [B(u) + n/B(u) * W(u)]dF(u) (7.5) 
3=1 
oo 

Q2,3(t) ~; X(3-1) (t) * [(1 ~() F(u)dB(u)] (7.6) 
j= 1 



7.2. 1¥lODEL AND ANALI SIS 91 
Q3,0 (t) ' U (u)d F(u) , (7. 7) 
Q3,s (t) ' F(u)d U(u) , (7. 8) o 

where 

X (t) ~ F(u)dB(u) * F(u)dW(u) , (7.9) 
the asterisk mark denotes the Stieltjes convolution and a(") (t) denotes the n-fold 

Stieltjes convolution of a distribution a(t) with itself. i.e. , a(~) (t) a("~1) (t) *a(t) , a(t) * 

b(t) ~ fot b(t 'u)da('u). 

We derive the mean time ~s from the beginning of system operation until a network 

processing is successful. Let 110,s (t) be the flrst-passage time distribution from state O 

to state S. Then, we have 

N 
Ho s(i.) ~; D(j- 1)(t) * Z(t), (7.10) 

3=1 

where 

D(t) Qo,o(t) + Q0,1 (i.) * Q1,0(t) + Q0,1(t) * Q1,2(t) * Q2,0(~f.) 

+ Q0,1(t) * Q1,2(t) * Q2,3(t) * Q3,0(t), (7.11) 

Z(t) = Q0.1(t) * Q1'2(t) * Q2,3(t) * Q3,s(t). (7.12) 

It is noted that D(i.) is the distribution function which a /hP is reset by the occurrence 

of errors and Z(t) is the distribution function which the system moves from state O 

to state F directly without being reset. Further, the flrst-passage time distribution 

Ho.F(t) from state O to state F by the N-th reset of a /lP is given by 

Ho,F(t) D(N)(t). (7.13) 
Therefore, . the first-passage time distribution Ls(t) until a network processing is 

successful is given by the following renewal equation: 

Ls (t) Ho s(t) + 110,F(t) * C.'(t-) * Ls(t). (7.14) 
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Let ip(s) be the Laplace StieltJes (LS) transform of any function ~~(t) i.e., ip(s) -

foOO e~std~)(t). Taking the LS transforms on both sides of (7.14) and arranging them, 

we have 

Is(s) ho,s(s) (7.15) 1 - ho.F(s)g(s) ' 

Hence, the mean time ~s is given by 

d Is(s) oo 
~s E tdLs(t) lisi_*mo[ ~ J 

N _'1(O) + dl(O) + 1ld(O) (7.16) 
1 d(O) I - d(O)N ' 

where ipl(s) is the differential function of ip(s), i.e., ip/(s') dip(s)Ids. From equation 

(7.16), it is noted that ~s is strictly decreasing in jV and is mininaized when jV oo. 

Next, we derive the expected reset number MH from the start of system operation 

or the restart by the reset until a network processing is successful. Let MR'(t) be the 

expected reset number until a network processing is successful in an interval (O,t] . 

Then, we have 

N-1 
MR(t) ~; jD(3)(t) * Z(t). (7.17) 

j= 1 

Thus , the expected reset number is given by 

N- 1 
MR _ tli_>.mooA'IR.(t) Ii_+mo ~ j[d(s)]jz(s) 

j=1 

d(O) [1 Nd(O)N~1 + (N - l)d(O)N], (7.18) 
1 - d(O) 

where it is noted that *.(O) I d(O). 

Further, Iet MF(t) be the distribution of the expected interruption number of pro-

cessings from the start of system operation until a network processing is successful. 

Then, we have the following renewal equation: 

MF(t) 110,F(t) * [1 + G(t) * MF(t)]. (7.19) 



Sinailarly, the expected interruption number MF until a network processing is successful 

is given by 
d (O)N 

MF I - d(O)N ' (7.20) 

7.3 Optimal POlicieS 

We obtain two objective functions which are the total expected cost C1 (N) and the 

expected cost C,2(1V) per unit of time until a network processing is successful, and 

discuss optimal policies which minimize them, respectively! 

7.3.1 Policy l 

Let cl be the cost for the reset and c2 be the cost for an interruption of processing. 

Then, we define the total expected cost C1 (N) until a network processing is successful 

as the following equation: 

C.'1(N) - cIMR. + c2MF 

D ( I DN) c2DN iVDN] + I DN (N l, 2, . . .), (7 21) cl[ - -1-D 
where D _ d(O) is the probability that a /hP is reset. 

We seek an optimal number N1' which minirnizes C1 (JV). Frorn the inequality 

C1(N + 1) C1(N) > O, we have 

N(1 - DN)(1 D ) > c2 (7.22) _ N+1 _ 
cl 

Denoting the left-hand side of (7.22) by L1 (N), we have 

I.1(1) (1 - D)(1 - D2), (7.23) 
L1(oo) ~l_>moo L (N) oo. (7.24) 

Hence, L1(N) is strictly mcreasmg m N from L ( 1) to oo Thus we have the followmg 

optimal policy: 
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(i) If 1.1(1) < c'.2lci, then there exists a finite and unique minimum N1*(> 1) which 

satisfles (7.22). 

(ii) If L1(1) ~ c2/cl' then Nf I and the totalexpected cost is C1(1) (c2D)/(1 D). 

In this model, cl is the cost for the increase of system resources such as spaces of 

memory and times by the reset , and c2 is the cost for the increase of system resources 

by the preventive_ maintenance to eliminate the cause of errors . It could be generally 

estimated that c2 is greater than cl ' i.e., c2 ;~ cl' Thus, we have L1(1) < c2/cl' and 

hence, JV1' > I . Further, it is easily shown that Nl* increases with c2/cl ' 

7.3.2 Policy 2 

In the policy I , we have adopted the total expected cost as an objective function. 

However, it would be more practical to introduce the measure of the time until a 

network processing is successful. Next , we consider an optimal policy which minimizes 

the expected cost per unit of time until a network processing is successful. That is, 

from equations (7.16) and (7.21), we deflne the expected cost C2(N) per unit of time 

as the following equation: 

C2 (N ) C1 (N) 
e~~,' 

D(1-DN) DN cl[ ~ NDN] + c2 
- 1-D 1-DN A + ~~L1_DDNN 

cl ~N~1 jDj(1 - D) - ~c2 
u + c2 A + 1_~~~L~~DDNN /~ (N l, 2, ) 

where 

A zl(O) + dl(O) > o. (7.26) 
l-D 

We seek an optimal number N2* which mmunlzes C2 (N) From the inequality 

C2(JV + l) C2(N) ~ O, we have 
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N(1 DN)(1 DN+1) + ~ [NDN(1 D N~1 c'2 (7.27) ) + (1 - D) ~: jDJ] ~ . 

j=1 cl 
Denoting the left-hand side of (7.27) by L2 (N), 

L (1) (1 D )(1 - D + /LD), (7.28) 
A 

L2(oo) Iim L2(N) oo. (7.29) N~* 
Putting the second term on the bracket of the left-hand side of (7.27) by 

N- 1 

L (N) 'VDN(1 D ) + (1 D) ~; 3Dj (7.30) 
j= 1 

we have 

L3(1) (1 - D2)D, (7.31) 
L (N + 1) L (N) DN+1[1 DN+2 + jVDN(1 - D2)] > O. (7 32) 

Hence, L3(N) is strictly increasing in N. Further, since IV(1 - DN)(1 DN+1) in (7.27) 

is also strictly increasing in N, L2(N) is also strictly increasing in N from L2(1) to oo. 

Thus , we have the following optimal policy: 

' N~(> 1) which (i) If L2(1) < c'2/cl ' then there exists a fimte and umque mnumum 

satisfies (7.27). 

(ii) If L2(1) > c2/cl' then N: I and the lesultmg cost Is 

c2 D 

C2(1) A(1 - D) + IhD' (7.33) 

Further, we compare the optimal policy 2 with the optimal policy I . Since from 

equations (7.22) and (7.27), 
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L (JV) L (N) //[NDN(1 DN+1) N~1 (N l, 2, . . .), + (1 - D) ~; jD3] > O 

(7.34) 

and hence, Nr Z N2*. 

This means that when the number N of reset is small, the mean time until a 

network processing is successful is large, since ~s strictly decreases in N. Thus, it 

would be better to adopt Policy 2 where N is small when we consider only the cost of 

the system on the whole. On the other hand, if we want a processing time to be small, 

we should adopt Policy I . 

7.4 Numerical Examples 
We compute numerically the optimal number N~ which minimizes C2 (N) fo' Policy 2 . 

Suppose that the mean initial processing time 11~j' of /lP is a unit of time and the mean 

time to error occurrences is (1/A)/(1/v) 30 - 60. Further, the mean stand-alone 

processing time is ( I /a)/(1/v) 5 - 20, the mean network connection processing 

time is (1/p)/(1/'v) I , the mean waiting time when a network connection processing 

fails is ~L'/(111') I - 4, the mean network processing time is (1/u)/(1/v) 10, the 

mean maintenance time after an interruption of processing is (1///)/(1/v) 10, the 

probability that a network connection processing fails is n/ 0.1, 0.2, 0.4, 0.6, and the 

cost cl for the reset is a unit of cost and the cost rate of an interruption of processing 

is c2/cl I - 3. 

Table 7 . I gives the optimal reset number N2* which minimizes the expected cost 

C2(N). For example, when (1/A)/(1/v) 60, wv 2, ~/ 0.2, (1/a)/(1/v) 10 and 

c2/cl 2, the optimal number is N2' 3. This indicates that the optimal number 

N~ decreases with (1/A)/(1/v), however, increases with tL'v, 7, (1/a)/(11~') and c2/cl' 

This can be interpreted that when the cost for an interruption of processing is large, 

N~ increases with c'2lcl' and so, the processing should not be excessively interrupted. 



That is, we should keep on executing the processing as long as possible by the reset. 

Table 7.1 also shows that N2* depends on each parameter when (1/A)/(1/'v) is small, 

i.e., when errors of a /lP occur frequently, however, N2* depends little on wv, nr and 

(1/a)/(1/v) when (1/A)/(1/v) > 60, and in this case, N2* is almost determined by 

c2 /cl ' 

7.5 COncluslOnS 

We have investigated the problem for improving the reliability of a /~P system with 

network processing, and have derived the mean time and the expected reset numbers 

until a network processing is successftil. Further, we have discussed optimal reset 

numbers which minimize the total expected cost and the expected cost per unit of 

time . 

It has been showrl from the mathematical analysis that the optimal reset number 

which minimizes the total cost is larger than that which minimizes the expected cost 

per unit,of time. It has been also shown from the numerical example that the optimal 

reset number which minimizes the expected cost decreases with the mean time to error 

occurrences of a uP, however, increases with the mean stand-alone processing time, 

the probability that a network processing fails and the cost for an interruption of 

processing. Further, it has been shown that when the mean time to error occurrences 

is large, the optimal reset number depends little on each parameter and is almost 

determined by the cost for an interruption of processing. 
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Table 7 1 Optunal leset numbel N~ to minimize C2(1V). 





Chapter 8 

Reliability of a Job Execution 
Process Using Signatures 

This chapter considers the reliability problern of a microprocessor system whose errors 

can be detected by using signatures: A system consists of DMR (Double Modular 

Redundancy) i.e., the same job is executed on two processors. A job is divided into 

N tasks each of which takes signatures. Signatures are compared at the end of each 

task. If signatures do not agree, its task executes again. The mean time and the total 

processing number of tasks until a job completes successfully are derived, using the 

theory of Markov renewal processes . Moreover, an optimal policy which minimizes the 

mean time is discussed. Numerical examples show that it is effective to take signatures 

when the size of a job is large. 

8.l Introduction 

As the techniques of error detection of microprocessors (l~Ps), three checkpoints which 

compare and store the states, or use signatures have been well-known [Touma90, ZB97, 

Vaidya98] . A parity check to detect errors is also one kind of signatures . Recently, 

watchdog processors, which detect errors by comparing signatures and computing re-

sults, have been widely used [Nanya9l]. 

This chapter considers the reliability problem of a ,hP system with signatures : A 
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job is executed on a /hP system and is divided into tasks with signatures. If a job is 

not divided, it has to be executed again from the begiuning when some errors have 

occurred. Consequently, this may incur a job execution time longer. Further, to detect 

errors of a /hP system, it consists of DMR (Double Modular Redundancy), i.e., two 

processors execute the same job with signatures, which are compared at the end of 

a task execution. If signatures do not agree, two processors execute again from the 

beginning of a task execution. If they agree with each other, two processors continue 

to the next task execution. 

We are interested in the number of tasks to reduce a job execution time, by dividing 

a job into tasks . For this purpose, we obtain the mean execution time to complete a 

job successfully, using the theory of Markov renewal processes [Osaki92] , and discuss 

an optimal number of tasks which minimizes it . Finally, nurrlerical examples are given, 

and show that the division wl. 'th signatures is effective when the size of a job is large. 

8.2 Model and Analysis 

( 1) The system consists of DMR and two processors execute the same job. 

(2) A job is divided into N tasks , which take signatures and are executed sequen-

tially. The processing times of each task have a general distribution Ac (t)(i 

･ ･ ･ , N). Signatures are compared with each other when each task terminates. 1, 2, 

The comparison time has a general distribution B (t) with flnite mean b. 

(a) If the signatures are different , the processing result is not correct . In this 

case, the task executes again after the time which has a general distribution 

G(t) with flnite mean ,h. 

(b) If the signatures are identical, the next task executes. All processing results 

of a job are compared after the processing of all tasks have completed. The 

comparison time has a general distribution V (t) with flnite mean v. Its 

comparison agrees with probability p(O < p ~ I ) and the processing result 



of a job is correct . On the other hand, its comparison does not agree with 

probability I - p and the processing result is not correct. In this case, a 

job executes again from the beginning after the time which has a general 

distribution W(t) with flnite mean w. 

(3) Errors of a processor in the execution of each task occur independently according 

to an exponential distribution (1 - e~;Lt). 

(c) Some errors are detected by the signatures when the processing of each task 

terminates. Undetected errors are detected finally . by comparing all results 

of a job. 

(d) If errors have occurred, the signatures are different . 

(4) When all processings of N tasks have completed, a job completes successfully! 

Under the above assumptions, we define the following states of the system: 

State d: processing of a job starts. 

State i: Processing of task i completes (i 1, 2, . . ･ , N). 

State S: Processing of a job completes successfully. 

The states deflned above form a Markov renewal process where state S is an abh 

sorbing state. Tcansition diagram between system states is shown in Figure 8.1. 

Let Qi,j(t) (i O, l, ' ' ' , N; j - O, 1, ' ' ' , N, S) be one-step transition probabilities 

of a Markov renewal process. Then, we have the following equations: 

Qz z(t) [ (1 - e~2Au)dAe(u)] * ~(t) * G(t) (,i O, 1, , ･･･ N- 1), (8.1) 

t e~2'LudA~(u)j * B(u) (i 
Q~,i+1(t) [ O, l, ' ' ' , N - l), (8.2) 
QN,o(t) (1 - p)V(t) * W(t), (8.3) 
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where the asterisk mark denotes Stieltjes convolution, i.e., a(t) * b(t) ~ fot b(t ~ u)da(u). 

First , we derive the mean time ~os (N) until a job completes successfully. Let Hos (t) 

be the flrst-passage time distribution from state O to state S. Then, we have 

( j- 1) Hos(t) ~ [~;Q(030 l)(t) * Q0,1(t)] * [~Q1'1 (t) * Q1'2(t)] * 

oo 
(j-1) ･ ･ ･ * [~; QN-1'N-1(t) * QN-1'N(t)] * [QN,s(t) + QN,o(t) * Hos(t)], (8.5) 

j= 1 

where a(i)(t) denotes the i-fold Stieltjes convolution of a distribution a(t) with itself, 

i.e., a(i)(t) E~ a(i~1)(t) * a(t). 

Let c(s) be the Laplace-Stieltjes(LS) transform of any function ~~(t) and ip/(s) be 

the differential function of ip(s), i.e., ip(s) ~; foOO e~std~)(t) and ipl(s) = dc(s)Ids. Then, 

the mean time ~os (N) is given by 

1 N-1 
~os(N) ; Isi_>+mo[~hbs(s)] -[ ~; gi(N) + v + (1 - p)w], (8.6) 

P i=0 

where 
_ q;,i(O) + q;,.+1 (O) 

l - qi,i(O) ' 

which represents the mean processing time of task i . 

Next, we derive the total expected processing number S(N) of tasks until a job 

completes successfully. The expected processing number Si (N) of task i is given by 

Sa(N) ~ ~j[qz~(O)]J Iq~z+1(O) I - qi,i(O) ' 

j=1 

Thus , the total processing number of tasks is 

l N-1 N- 1 oo 1 

S(N) = ~j[1 -p]j-lp ~ Sz(N) ; ~ _ . . ･ (8.9) 
- -- z-o I q.,~(O) 

8.3 Optlmal POllCy 

We discuss an optimal policy which minimizes the mean time ~os(N) until a job com-

pletes successfully. We seek an optimal division number N* which minimizes ~os(N) 



in (8.6). From the inequality ~os(N + l) gos(N) ~ O, we have 

N N- 1 ~]~.(N + 1) - ~ ~,(N) > O. (8.10) 

i=0 i=0 
Denoting the left side of (8.lO) by L(N), we have 

L(1) eo(2) + .el(2) - ~o(1), (8.11) 
N- 1 N-2 N 

L(N) - L(N 1) ~;~i(N + l) + ~ ~i(N 1) - 2 ~; ~i(N). (8.12) 
i=0 i=0 

Hence, if ~iN=0 ~i(N + 1) + ~;i~=-02 ~i(N - 1) > 2 ~:"N=~ol~i(N), then L(N) is strictly 

increasing in N from L(1). 

Thus, we have the following optimal policy: 

(i) If eo(2) + ~l(2) < ~o(1), then there exists a flnite and unique minimum N'(> l) 

which satisfies (8.lO). 

(ii) If ~,o(2) + ~l (2) ~ go(1), then N I In this case we should not drvide a Job 

The processing times of each task would be random and proportional to the size 

of a task. Thus, we assume that the processing times of each task have an identical 

exponential distribution, i.e., A(t) I e~(N/~)t. Then, the mean time eos(N) in (8.6) 

is 

~os(N) ;[(N + 2Aa)(~ + b) + 2A/la + v + (1 - p)w], (8.13) 

and the inequality (8.10) is simply rewritten as 

2Aa2 

N(N+1) ~ b ' (8.14) 
Thus, if l/A < a2/b, then there exists a finite and unique minimum N'(> 1) which 

satisfies (8.14). Further, the total processing number of tasks is 

S(N') ; (N' + 2Aa). (8.15) 
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8.4 Numerical Examples 

We compute numerically the mean time ~os (N) and the optimal nuniber N* which 

minimizes ~os ( N). Suppose that the mean comparison time b of signatures is a unit 

of time of the system, the processing times of each task have an identical exponential 

distribution ( I - e~(N/a)t), the mean processing time when a job is not divided is 

a/b 100 - 400 where its parameter a represents the size of a job. Further suppose 

that the mean time to error occurrences is (1/A)/b 3600 - 18000, the mean time 

until each task executes again is lh/b I , the mean comparison time of processing 

results of a job is v/b - I , the mean time until a job executes again is w/b I , the 

probability that the comparison of processing results of a job agrees is p 0.8 - I .O. 

, Table 8.1 gives the optimal number N' which minimizes ~os(N). For example, 

when a/b 200 and (1/A)/b 10800, the optimal division number is N' - 3. This 

indicates that N* decreases with (11A)/b, however, increases with a/b, i.e., as the size 

of a job becomes large, N* increases. 

Table 8.2 gives the mean time ~os(N*) when a job is divided into N* tasks and 

~os(1) when it is not divided. This indicates that the mean time ~os(N*) decreases 

with (1/A)/b and p. From the comparison with mean times ~os(N') and eos(1), it can 

be seen that the processing time becomes shorter about 15 percents by the division with 

signatures. In particular, the division is much effective in shortening the processing 

time when the size of a job is large. 

8.5 Conclusions 

From the viewpoint of accuracy and speeding-up of a job processing, we have inves-

tigated the reliability properties of a /lP system where some errors are detected by 

signatures. We have derived the mean time and the total processing number of tasks 

until a job completes successfully, Further, we have discussed an optimal policy which 

minimizes the mean time. 
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From the numerical examples , we have shown the tendencies of the optimal division 

number which minimizes ~os(N) for various pararneters, and that the division with 

signatures is effective when the size of a job is large. 
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Table 8.1: Optimal number N' to minimize eos (N). 
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Chapter 9 

Conclusions 

This thesis has studied the stochastic models of a microprocessor (/hP) system. Using 

the theory of Markov renewal processes, we have obtained the reliability measures 

such as the mean times to system failure and to completion of the process . Moreover, 

we have derived expected costs and have analytically discussed optimal policies which 

minimize them. Finally, to understand the results easily, we have given nurnerical 

examples o~ each model and have evaluated them for various standard parameters. If 

some parameters are estimated from actual data, we could select the best policy. 

In Chapter 2, we have considered a /lP system with a watchdog timer (WDT) which 

is preventively maintained at tilne T and at reset number N. The availability of the 

system has been obtained, and an optimal inspection time and reset number which 

maximize it have been discussed. It has been shown from the numerical examples that 

the coverage of a WDT plays an important role for providing the system with high 

reliabilityL 

In Chapter 3, we have treated a system where a main processor (MPu) has N 

watchdog processors (WDPs) with self-checking. To show the number of WDPS for 

prevention that the MPu becomes faulty, we have formulated the model where the 

system has N standby redundant WDPs. The reliability function and the expected 

cost until the MPu becomes faulty have been derived, and an optimal number of WDPS 

which minimizes the expected cost has been analytically discussed. It has been shown 
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that it is effective to have at least one WDP when the system requires a high reliability. 

In Chapter 4 , we have studied a system with N uP units, where each /lP unit 

consists of /hP and WDP. Under the assumption that a /lP is in faulty state if more 

than K resets have occurred at time T', we have derived the mean time until system 

failure. Introducing the cost of a lhP, we have analytically discussed the problem to 

obtain how many number of /hP units is optimal. It has been shown numerically that 

the system is enough to have only one unit when the reset number K takes ordinary 

values from 4 to 8. 

From the viewpoint of real-time processing of the system, it would be necessary 

to have the function which completes one processing within a certain limit time. In 

Chapter 5, we have discussed the model of a system with N /~P units. Under the 

assumption that a ,hP is in faulty state if it does not flnish one processing until a 

limit time T', we have obtained the mean time and the mean processing number until 

system failure. Moreover, we have derived the cost effectiveness and have discussed 

an optimal number of llPs which minimizes it. An interesting consequence has been 

obtained numerically that when a limit processing time is small comparatively, as the 

/lP unit becomes advanced, the expected cost per unit of processing decreases, and 

oppositely, the optimal number increases. 

In Chapter 6 , we have considered a system with N TMR (Triple Modular Redun-

dancy) units in which each unit consists of /hP and WDP. Introducing the concept of 

complexity, the mean time to system failure and the expected cost have been derived, 

and optimal numbers of TMR units which maximize or minimize them have been ana-

lytically discussed. It has been found that to develop the reliability of the system, we 

should more improve the coverage of a WDP. 

In Chapter 7, we have dealt with the problem for improving the reliability of a /hP 

system with network processing, and have derived the mean time and the expected 

reset number until a network processing is successful. Further, we have analytically 

discussed an optimal reset number which minimizes the expected cost. It has been 



ll3 

shown that when errors of a uP do not occur frequently, the optimal reset number is 

almost determined by the cost rate of an interruption of processing. 

The reliability problem of a /lP system whose errors can be detected by using 

signatures has been proposed in Chapter 8. We have derived the mean time and the 

total processing number of tasks until a job cornpletes successfully. Further, we have 

discussed an optimal division number of a job. It has been shown from the numerical 

examples that the division with signatures is effective when the size of a job is large. 

As VLSI (Very Large Scale Integration) technology has rapidly developed, uPs have 

been used in many actual areas. It would be very important to evaluate and improve 

the reliability of systems with /~Ps. The results obtained in this thesis would be applied 

to practical fields by making some suitable modifications and extensions . As examples , 

Chapters 3, 4, 5 and 6 could be applied to not only the system of automobiles but 

also the systems of space rockets and deep sea explorations, which cannot undergo 

corrective maintenances by repairmen. Further, Chapter 2 would be applicable to 

the following policies: (i) The error detection policy of ROM (Read Only Memory) 

prograniining on a design and development stage, (ii) the preventive maintenance and 

replacement policies of a /lP on an operational stage, and (iii) the policy to ilnprove 

mission availability when an operational time is given. 

Finally, we enumerate the following questions for future studies: 

(1) Is it possible to estimate statistically various parameters in the formulated models? 

(2) What types of distribution are fit for the observed data? 

(3) What are appropriate measures which show the reliability of the system? 

Various kinds of larger and more complicated systems will be grown up in future 

industries. We also would consider and formulate new stochastic models, and analyze 

their characteristics and evaluate their performances, using the techniques and the 

results of this thesis. Further studies for such subjects would be greatly expected. 
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