A Remark on Complex Analytic Mappings

Yûji HASHIMOTO

複素解析写像に関する一注意

橋本有司

Let R be a Riemnn surface of an algebroid function and M a Riemann surface of an algebraic function. The purpose of this paper is to give a proof of the second main theorem on complex analytic mappings of R into M by applying the Ahlfors theory of covering surfaces.

§1. Introduction. Let R be an n-sheeted covering surface of the complex plane $|z| < \infty$, which is a Riemann surface of an algebroid function, M an m-sheeted covering surface of the extended complex plane $|w| \le \infty$, which is a Riemann surface of an algebraic function of genus g, and φ a complex analytic mapping of R into M. As for the Nevanlinna theory of such complex analytic mappings, the first main theorem is given in Hiromi-Mutō¹⁰, in which some nonexsistence theorems on complex analytic mappings are also given. Further, the second main theorem and the deficiency relation are given in Noguchi²⁰ by using the differential geometric method.

On the other hand, concerning the Ahlfors theory of covering surfaces, Dufresnoy³⁰ and Tumura⁴⁰ develop the theory in the case of algebroid functions. The purpose of this paper is to give a proof of the second main theorem along this line. In § 2, we shall give a proposition on the Ahlfors theory of covering surfaces in the case of complex analytic mappings of R into M, and then in § 3, we shall give the proof applying this.

The auther wishes to express his deep gratitude to Professor K. Matsumoto for valuable advice.

§2. Let R. M. φ be as in §1. We consider the metric on M as is induced by $|w| \leq \infty$. Let R_r be the subregion of R over $|z| \leq r$, and M_r its image. According to the fundamental theorem of covering surfaces, we have

 $\rho \geq (2g-2) \mathrm{S-hL},$

where ρ , S and L are the Euler characteristic, the mean sheet number and the length of the relative boundary of M_r and h is a constant depending only on M.

Here, we shall modify this inequality to a form applicable to our study. Let a_1, \dots, a_q be q points on M, D_1 ,, D_q disjoint schlicht discs in M with their centers at a_1, \dots, a_q and C_1, \dots, C_q the circumferences of D_1, \dots, D_q . If M_r is decomposed by the cross cuts and the ring cuts over C_1, \dots, C_q into subregions, we call the subregions over D_1, \dots, D_q islands or peninsulas and the subregions over $M - \bigcup_{k=1}^q D_k$ lakes or seas respectively, according as the nonexistence or existence of the relative boundaries. Now, denoting by $p(D_k)$ the number of islands in M_r over D_k , we have the following

PROPOSITION.

$$\sum_{k=1}^{q} p(D_{k}) + \rho \ge (2g - 2 + q) S - hL.$$

Proof. Let M_r be decomposed by the cross cuts and the ring cuts over C_1, \dots, C_q into subregions. We divide the islands, the peninsulas, the lakes and the seas further into two classes according as their Euler characteristics are nonnegative or equal to -1 and denote these classes I_+ , I_- , P_+ , P_- , L_+ , L_- and S_+ , S_- respectively, where the class L_- is empty because of the Hurwitz formula. Now, estimating the Euler characteristic of each of those subregions, we have

$ \rho_i \ge -1, $	(1)
-1 = -1,	(2)
$ ho_{ m p} \ge 0,$	(3)
-1 = -1,	(4)
$\rho_l \ge (2g - 2 + q) S_l,$	(5)
$\rho_{\rm s} \ge (2g - 2 + q) S_{\rm s} - h L_{\rm s},$	(6)
-1 = -1,	(7)

where ρ_i , -1, ρ_p , -1, ρ_t , ρ_s , -1 on the left sides are the Euler characteristics of the subregions in the classes I₊, I₋, P₊, P₋, L₊, S₊, S₋ respectively, S_t and S_s on the right sides are the mean sheet numbers of the subregions in the classes L₊ and S₊, and L_s is the length of the relative boundary of the subregion in the class S₊. Here, (1), (2), (3), (4) and (7) are obvious and inequalities (5) and (6) are consequences of the fundamental theorem of covering surfaces. The following inequality (8) is also a consequence of the fundamental theorem of covering surfaces :

 $0 \ge (2g-2+q) S'_{s}-hL'_{s}$,

(8)

where S'_s and L'_s are the mean sheet number and the length of the relative boundary of the subregion in the class S_- . Now, we add these inequalities (1) to (8) for all the subregions side by side, and then add N, the number of the cross cuts, to the both sides of the resulting inequality. If a region F is decomposed into two subregions, F_1 and F_2 by some ring cuts and n cross cuts, we have $\rho(F)=\rho(F_1)+\rho(F_2)+n$, where $\rho(F)$, $\rho(F_1)$ and $\rho(F_2)$ are the Euler characteristics of the regions F, F_1 and F_2 . Hence, the left side is equal to ρ . As for the right side, we consider as follows. We decompose M_r by only ring cuts into subregions and then these subregions by cross cuts, where the subregions without relative boundaries leave as they are. We denote the subregions with relative bondaries by F_1 , ..., F_t , which are decomposed by the $N_1 \dots, N_t (N_1 + \dots + N_t = N)$ cross cuts. Then, each F_k is decomposed into at most $N_k + 1$ subregions, among which at least one is not simply connected, that is, has a nonnegative characteristic. So that, the sum of N and -1's of (4) and (7) is nonnegative. Further, the sum of -1's of (1) and (2) is the minus of the number of the relative boundary of M_r over $M - \bigcup_{k=1}^{q} p(D_k)$, the right side is estimated from below at $-\sum_{k=1}^{q} p(D_k) + (2g-2+q)\overline{S} - h\overline{L}$. Therefore, we have

$$\sum_{k=1}^{q} p(D_{k}) + \rho \ge (2g - 2 + q) \,\overline{S} - h\overline{L}$$

Here, we have $|S-\bar{S}| \leq hL$ by the first covering theorem, so that, $\bar{S} \geq S-hL$. Clearly $\bar{L} \leq L$ and we obtain the proposition.

§3. Let R, M, φ be as in §1. We denote by p_R and p_M the projection of R onto $|z| < \infty$ and the projection of M onto $|w| \le \infty$, and by $\tilde{\varphi}$ the algebroid function $p_M \circ \varphi$. First, following Hiromi-Mut \bar{o}^{1} , we shall introduce the counting function and the proximity function of φ . Let a be a point of M of order $\lambda_a - 1$, and c a point of R of order $\lambda_c - 1$ such that φ (c) = a. Then, if we set p_M (a) = w_o and $p_R(c) = z_o$, the algebroid function $\tilde{\varphi}$ can be represented in the neighborhood of z_o as

 $\mathbf{w} = \mathbf{w}_{0} + \gamma_{\tau} \ \left(\frac{\lambda_{c}}{\sqrt{z-z_{0}}} \right)^{\tau} + \cdots \cdots \qquad (\gamma_{\tau} \neq 0).$

We set n (r, a, φ) = $\Sigma \tau$, where the summation Σ is taken for all c such that φ (c)=a and $|p_R(c)| \leq r$, and define the counting function as follows:

$$N(\mathbf{r},\mathbf{a},\boldsymbol{\varphi}) = \frac{1}{n\lambda_{\mathbf{a}}} \Big\{ \int_{0}^{r} \frac{\mathbf{n}(\mathbf{t},\mathbf{a},\boldsymbol{\varphi}) - \mathbf{n}(\mathbf{o},\mathbf{a},\boldsymbol{\varphi})}{t} d\mathbf{t} + \mathbf{n}(\mathbf{o},\mathbf{a},\boldsymbol{\varphi}) \log r \Big\}.$$

Let K_a be the schlicht disc in M with the center a and the radius δ_a . Setting

$$U_{a}(\alpha) = \begin{cases} \frac{1}{\lambda_{a}} \log \frac{\delta_{a}}{|w - w_{o}|}, & \alpha \in K_{a} \quad (P_{M}(\alpha) = w) \\ 0, & \alpha \in K_{c} \end{cases}$$

we define the proximity function as follows:

$$\mathbf{m}(\mathbf{r},\mathbf{a},\boldsymbol{\varphi}) = \frac{1}{2n\pi} \int_{\Gamma_{\mathbf{r}}} \mathbf{U}_{\mathbf{a}} \left(\boldsymbol{\varphi} \left(\boldsymbol{\gamma}\right)\right) \mathrm{d}\boldsymbol{\theta},$$

where Γ_r is the circumference of R_r and $p_R(\gamma) = re^{i\theta}$. In these circumstances, $m(r,a,\varphi) + N(r,a,\varphi)$ is independent of a except for a bounded term. Namely it is known that the following theorem holds:

FIRST MAIN THEOREM (Hiromi-Muto¹).

m (r,a,
$$\varphi$$
) + N (r,a, φ) = $\frac{1}{m}$ T (r, $\tilde{\varphi}$) + O (1).

Here, T (r, $\tilde{\varphi}$) is the characteristic function of the algebroid function $\tilde{\varphi}$ in the sense of Selberg⁵. We define the characteristic function of φ by

$$T(\mathbf{r},\boldsymbol{\varphi}) = \frac{1}{m}T(\mathbf{r},\tilde{\boldsymbol{\varphi}}).$$

Now, we shall give a proof of the second main theorem by using the proposition in § 2. Denoting by N(r,R) the counting function of the branch points of R, we have the following

SECOND MAIN THEOREM (cf. Noguchi²⁾).

$$(2g-2+q) T(\mathbf{r},\boldsymbol{\varphi}) \leq \sum_{k=1}^{q} N(\mathbf{r},a_{k},\boldsymbol{\varphi}) + N(\mathbf{r},R) + O(\sqrt{T(\mathbf{r},\boldsymbol{\varphi})} \log T(\mathbf{r},\boldsymbol{\varphi})), \qquad \mathbf{r} \in \mathbf{E},$$

where E satisfies $\int_{E} \frac{1}{\mathbf{r} \log \mathbf{r}} d\mathbf{r} < \infty.$

Proof. Let S (t), ρ (t) and L (t) be the quantities S, ρ , L for M_t in § 2. Then, the proposition in § 2 is

$$(2g-2+q) S(t) \leq \sum_{k=1}^{q} p(D_k) + \rho(t) + hL(t).$$

We divide the both sides by nt, and integrate them from r_o to r. It is well-known that

$$\frac{1}{n} \int_{r_o}^{r} \frac{\mathrm{S}(t)}{t} \, \mathrm{d}t = \mathrm{T}(r,\varphi) + \mathrm{O}(\log r)$$

Since $p(D_k) \leq n(t,a_k,\varphi)$, we have

$$\frac{1}{n} \int_{r_o}^{r} \frac{p(D_k)}{t} dt \leq N(r, a_k, \varphi) + O(\log r)$$

Further, we have ρ (t) = n (t,R) - n by the Hurwitz formula, where n (t,R) is the sum of orders of the branch points of R_t. Thus, we have

$$\frac{1}{n} \int_{r_o}^{r} \frac{\rho(t)}{t} dt = N(r,R) + O(\log r).$$

Last, following Dufresnoy³⁾ and Dinghas⁶⁾, we have

$$\frac{1}{n}\int_{r_{o}}^{r}\frac{L\left(t\right)}{t}dt = O\left(\sqrt{T\left(r,\varphi\right)}\log T\left(r,\varphi\right)\right), \qquad r \in E$$

in the usual manner. Combining these equalities and inequalities, we obtain the theorem.

The rest of the paper is concerned with the deficiency relation. For $a \in M$, we define the deficiency as

$$\delta(\mathbf{a},\varphi) = 1 - \lim_{\mathbf{r}\to\infty} \frac{\mathbf{N}(\mathbf{r},\mathbf{a},\varphi)}{\mathbf{T}(\mathbf{r},\varphi)}.$$

Now, let φ be the complex analytic mapping of R into M such that the proper existence domain of the algebroid function $\tilde{\varphi}$ coincides with R. Then, according to the branch point theorem of Ullrich⁷, we have

 $N(r,R) \leq (2n-2)mT(r,\varphi).$

Therefore, for such φ , we have the following

DEFICIENCY RELATION (cf. Noguchi²).

$$\sum_{k=1}^{q} \delta(\mathbf{a}_{k}, \boldsymbol{\varphi}) \leq (2-2g) + 2(n-1) \mathrm{m}.$$

REFERENCES

- 1) Hiromi G. and Muto H.: On the existence of analytic mappings, II. Kodai Math. Sem. Rep. 19, 439-450. 1967.
- 2) Noguchi J.: Holomorphic mappings into closed Riemann surfaces. Hiroshima Math. J. 6, 281-291. 1976.
- 3) Dufresnoy J.: Sur les domains couvert par les valeur d'une fonction méromorphe ou algébroïde. Ann. Sci. Ecole Norm. Sup. (3) 58, 179-259. 1941.
- 4) Tumura Y.: Quelques applications de la théorie de M. Ahlfors. Jap. J. Math. 18, 303-322. 1942.
- Selberg H. L.: Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8, 1-72. 1934.
- 6) Dinghas A.: Eine Bemerkung zur Ahlforsschen Theorie der Überlagerungsflächen. Math. Z. 44, 568-572. 1938.
- 7) Ullrich F. E.: Über den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung. J. Reine Angew. Math. 167, 198-220. 1932.
- 8) Ahlfors L.: Zur Theorie der Überlagerungsflächen. Acta Math. 65, 157-194. 1935.

(Recieved January 25. 1986)