Identity Elements in Rings

Takao SUMIYAMA

環の単位元について
隅 山 孝 夫

Abstract

As is well－known，（one－sided or two－sided）identity elements in rings play an important role in the thory of rings and modules．The purpose of this paper is to consider several conditions for a ring to have identity elements．

Definitions．Throughout R will represent an associative ring．An element $e \in \mathrm{R}$ is called a right （left）identity if $x e=x(e x=x)$ holds for any $x \in \mathrm{R}$ ．If e is both a right identity and left identity，e is called an identity and denoted by l ．When R is a ring with l ， a right R －module M is called unitary if $m \mathrm{l}=m$ holds for any $m \in \mathrm{M}$ ．

When S is a subset of $\mathrm{R}, \mathrm{A}_{l}(\mathrm{~S})$ denotes the left annihilator $\{x \in \mathrm{R} \mid x \mathrm{~S}=0\}$ ．Similarly $\mathrm{A}_{\mathrm{r}}(\mathrm{S})$ is the right annihilator．

Let A be a ring with l and N be a unitary right A －module．The Abelian group $\mathrm{A} \oplus \mathrm{N}$ with the multiplication

$$
\left(a_{1}, n_{1}\right)\left(a_{2}, n_{2}\right)=\left(a_{1} a_{2}, n_{1} a_{2}\right)
$$

is a ring，which is denoted by $\left[A ; N_{A}\right]$ ．Naturally N is regarded as an ideal of $\left[A ; N_{A}\right]$ by the mono－ morphism $n \longmapsto(0, n)$ ．Also A is regarded as a right ideal of $\left[A ; N_{A}\right]$ by $a \longmapsto(a, 0)$ ．

Lemma $1.1(1)(1, n)$ is a right identity of $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$ for any $n \in \mathrm{~N}$ ．
（2） $\mathrm{N}=\mathrm{A}_{\mathrm{r}}\left(\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]\right)$ ．
（3） A is isomorphic to the left $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$ －endomorphism ring of $\left[A ; N_{A}\right]$ ．

Proof．As（1）and（2）are easy，we shall show only （3）．Let f be a left $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$－endomorphism of $[\mathrm{A}$ ； N_{A} ］，then one will easily see that $f((1,0))=(\mathrm{a}, 0)$ for some $a \in \mathrm{~A}$ ．Let ϕ be the mapping $f \longmapsto a$ ．As is easily verified，ϕ is a ring homomorphism．

Conversely，for any $a \in \mathrm{~A}$ ，let f be the endomorphism of $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$ defined by $f((x, n))=$ $(x a, n a)$ ．Denote the mapping $a \longmapsto f$ by ψ ，then ϕ ． $\psi=\psi \circ \phi=i d$ ．This completes the proof．

Theorem 1．2 If R has a right identity，then there exist a ring A with identity and a unitary right A －module
N such that $R \cong\left[A ; N_{A}\right]$ ．A and N_{A} are uniquely determined up to isomorphism．

Proof．Let e be a right identity of R．Then $\mathrm{R}=e \mathrm{R} \oplus \mathrm{A}_{\mathrm{r}}(e)$ as right R －modules．If we put $\mathrm{A}=$ $e \mathrm{R}, \mathrm{A}$ is a ring with e an identity and $\dot{\mathrm{A}}_{\mathrm{r}}(e)=\mathrm{A}_{\mathrm{r}}(\mathrm{R})=$ N is naturally regarded as a right A－module．Any $r \in \mathrm{R}$ is uniquely written as $r=a+n(a \in \mathrm{~A}, n \in \mathrm{~N})$ ． The mapping $\varphi: r \longmapsto(a, n)$ gives an isomorphism from R to $\left[A ; N_{A}\right]$ ．The uniqueness of A and N_{A} is clear from Lemma 1．1．

Corollary 1．3 If R has a right identity and A_{r} $(R)=0$ ，then R has an identity．

Corollary 1．4 If R has a unique right identity，then it is an identity．

For，both of these conditions imply $\mathrm{N}=0$ ．
Since $A_{r}(R)$ is contained in the Jacobson radical of R ，if a semisimple ring has a right identity，then it is an identity．

Theorem 1.5 （cf．［1］§6）If［A； N_{A} ］is left Artinian， then A is left Artinian and N consists of only finitely many elements．

Proof．For any left ideal L of $\mathrm{A},[\mathrm{L} ; \mathrm{N}]=\{(a$ ， $\left.n) \epsilon\left[A ; N_{A}\right] \mid a \in L\right\}$ is a left ideal of $\left[A ; N_{A}\right]$ ．From this we can see that A is left Artinan．

For any Abelian subgroup N^{\prime} of $\mathrm{N},\left[0 ; \mathrm{N}^{\prime}\right]=$ $\left\{(0, n) \epsilon\left[A ; N_{A}\right] \mid n \in \mathrm{~N}^{\prime}\right\}$ is a left ideal of $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$ ． It follows that Abelian subgroups of N satisfy the descending chain condition．

Let x be an arbitrary element of N ．If we suppose that the additive order of x is infinite，we get a strictly descending chain of Abelian subgroups of N

$$
Z x \supsetneq 2 Z x \supsetneq 2^{2} Z x \supsetneq \ldots \ldots .
$$

This is a contradiction，so any element of N has a
finite order．It follows that

$$
\mathrm{N}=\mathrm{N}_{\mathrm{p}_{1}} \oplus \mathrm{~N}_{\mathrm{p}_{2}} \oplus \ldots \ldots \oplus \mathrm{~N}_{\mathrm{p}_{t}}
$$

where each $\mathrm{N}_{\mathrm{p}_{i}}$ is a primary Abelian subgroup belonging to a prime p_{1} and $p_{1}, p_{2}, \ldots, p_{t}$ are distinct primes．Without any loss of generality，we can suppose $\mathrm{N}=\mathrm{N}_{\mathrm{p} i}$ ，that is，there exists a prime $\mathrm{p}=\mathrm{p}_{1}$ such that the order of any element of N is a power of p．

Let us put $\mathrm{N}^{(\mathrm{j})}=\left\{x \in \mathrm{~N} \mid \mathrm{p}^{\mathrm{j}} x=0\right\}$ for each positive integer j ，then

$$
\mathrm{N}^{(1)} \cong \mathrm{N}^{(2)} \cong \ldots \ldots \subseteq \mathrm{N}^{(\mathrm{m})} \subseteq \ldots \ldots
$$

is an ascending chain of Abelian subgroups of N and $\mathrm{N}=\bigcup_{i=1}^{\infty} \mathrm{N}^{(i)}$ ．Suppose there exists a strictly increasing sequence of positive integers $e_{1}<e_{2}<\ldots<e_{n}<$ ．．．．such that $\mathrm{N}^{\left(\mathrm{e}_{1}\right)} \varsubsetneqq \mathrm{N}^{\left(\mathrm{e}_{2}\right)} \varsubsetneqq \ldots . \subsetneq \mathrm{N}^{\left(\mathrm{e}_{n}\right)} \subsetneq \ldots$. Regarding that each $\mathrm{N}^{(\mathrm{j})}$ is a right A －submodule of N ， we get a strictly descending infinite chain of left ideals of A

$$
\mathrm{p}^{\mathrm{e}_{1}} \mathrm{~A} \supsetneq \mathrm{p}^{\mathrm{e}_{2}} \mathrm{~A} \supsetneq \ldots \ldots \mathrm{p}^{\mathrm{e}_{n}} \mathrm{~A} \supsetneq \ldots .
$$

This contradicts that A is left Artinian．It follows that there exists a positsve integer k such that $\mathrm{N}^{(\mathrm{k})}=$ N ．

$$
0=\mathrm{N}^{(0)} \cong \mathrm{N}^{(1)} \cong \mathrm{N}^{(2)} \cong \ldots \subseteq \mathrm{N}^{(k)}=\mathrm{N}
$$

is a chain of＇Abelian subgroups of N ，where each $N^{(j)} /$ $\mathrm{N}^{(\mathrm{j}-1)}(1 \leqq \mathrm{j} \leqq \mathrm{k})$ is a finite direct sum of cyclic groups of order p by the descending chain condition．Hence N is a finite set．

§ 2

Definitions．When R is a ring，$J(R)$ denotes the Jacobson radical of R ，which means the intersection of all modular，maximal left ideals of R （cf．［6］．
Chapter III）． R^{\times}will represent the multiplicative semigroup of R ．Also，

$$
\mathrm{B}(\mathrm{R})=\{a \in \mathrm{R} \mid a \in R a\}, \mathrm{B}^{\prime}(\mathrm{R})=\{a \in \mathrm{R} \mid a \in a \mathrm{R}\}
$$

$\mathrm{S}(\mathrm{R})=\{a \in \mathrm{R} \mid \mathrm{R}=\mathrm{R} a\}$ ，and $\mathrm{T}(\mathrm{R})=\left\{a \in \mathrm{R} \mid \mathrm{A}_{l}\right.$ （a）$=0\}$ ．
A left ideal L of R is called to be small if $L+M$ is a proper left ideal whenever M is a proper left ideal of R．

Lemma 2.1 （1）$\quad B(R)$ is a（semigroup－theoretic）right ideal of R^{\times}．
（2）$S(R)$ and $T(R)$ are subsemigroups of R^{\times}．
（3） $\mathrm{S}(\mathrm{R}) \cong \mathrm{B}(\mathrm{R})$ ．
Theorem 2．2 R has a right identity if and only if $B(R)$ $\cap \mathrm{T}(\mathrm{R}) \neq \phi$ ．

Proof．Let $B(R) \cap T(R) \neq \phi$ and a $\epsilon B(R) \cap$ $\mathrm{T}(\mathrm{R})$ ．Then there exists $e \in \mathrm{R}$ such that $a=e a$ ．Let x be an arbitrary element of R ，then

$$
(x-x e) a=x(a-e a)=0
$$

It follows that $x=x e$ ，hence e is a right identity．
Since every element of $J(R)$ is quasi－regular，we can easily see that $J(R)$ is a small left ideal if R has a right identity．The converse is not true in general，but the following fact is known．

Thenrem 2.3 （［2］，Satz 2）R has a right identity if and only if the following three conditions are satis－ fied．
（1）$R / J(R)$ has an identity．
（2）$J(R)$ is a small left ideal．
（3）$B^{\prime}(R)=R$ ．
In case R is left or right Noetherian，the follow－ ing is known．

Theorem 2.4 （［8］）When R is left or right Noetherian， R has a right identity if and only if $B^{\prime}(R)=R$ ．

We can give an another proof in case R is left Noetherian．Assume that R is left Noetherian and B^{\prime} $(R)=R$ ．Let M be the set of all left ideals I of R which satisfies the following condition：
（＊）There exists some e（depending on I$) \in \mathrm{R}$ such that $x e=x$ for any $x \in \mathrm{I}$ ．
Since M is not empty，M has a maximal element I^{*} ． There exists $e^{*} \in \mathrm{R}$ which satisfies $x e^{*}=x$ for any $x \in I^{*}$ ．Let us assume that $I^{*} \neq \mathrm{R}$ ，then there exists $a \in \mathrm{R}$ with $a \in \mathrm{I}^{*} . \mathrm{K}=\mathrm{I}^{*}+R a+\mathrm{Z} a$ is a left ideal of R which contains I＊properly．We can choose $e \in \mathrm{R}$ such that $\left(a e^{*}-a\right) e=a e^{*}-a$ ．If we put $e^{\prime}=e^{*}+e-e^{*}$ e ，then for any element $y=x+r a+z a\left(x \in \mathrm{I}^{*}, r \in \mathrm{R}\right.$ ， $z \in Z$ ）of K ，it holds that

$$
\begin{aligned}
y e^{\prime}= & x\left(e^{*}+e-e^{*} e\right)+r a\left(e^{*}+e-e^{*} e\right)+ \\
& z a\left(e^{*}+e-e^{*} e\right) \\
= & x e^{*}+x e-x e^{*} e+r\left(a e^{*}+a e-a e^{*} e\right)+ \\
& z\left(a e^{*}+a e-a e^{*} e\right) \\
= & y .
\end{aligned}
$$

It follows that $\mathrm{K} \epsilon \mathrm{M}$ ．This contradicts the maximali－ ty of I^{*} ．Consequently $\mathrm{I}^{*}=\mathrm{R}$ ，hence R has a right identity．

Definition．An element a of R will be called a right multiplicator if there exists a fixed integer n such that $x a=n x$ holds for any $x \in \mathrm{R} . \mathrm{M}(\mathrm{R})$ will represent the set of all right multiplicators of R ， which forms a subring of R ．

Theorem 2.5 （［5］，Satz 3．1） R has a right identity if and only if the following two conditions are satisfied．
（1）For any homomorphic image R^{\prime} of R ，it holds that $\mathrm{A}_{l}(\mathrm{R})=0$ ．
（2）$M(R) \cap T(R) \neq \phi$.

§ 3

We consider two conditions concerning an ele－ ment $a \in \mathrm{R}$ ．
（A） $\mathrm{R} a=\mathrm{R}$（i．e．$a \in \mathrm{~S}(\mathrm{R})$ ）
（B）$\quad \mathrm{A}_{l}(a)=0$（i．e．$a \in \mathrm{~T}(\mathrm{R})$ ）
These two conditions are independent in general．
Example l．Let R be a commutative integral domain （for instance，Z ）．If a is different from 0 ，then（B） holds，though（A）may not．：
Example 2．Let V be a vector space over a field k of
countably infinite dimension with a basis $\left\{e_{1}, e_{2}, \ldots\right.$ ， $\left.e_{\mathrm{n}}, \ldots.\right\}$ ．Let R be the endomorphism ring of V ．We define $a \in \mathrm{R}$ by $\mathrm{e}_{1} \longmapsto \mathrm{e}_{1+1}(1 \leqq \mathrm{i}<\infty)$ ．Also $b \in \mathrm{R}$ is defined by $e_{1} \longmapsto \longrightarrow 0$ and $e_{i} \longmapsto \longrightarrow e_{1-1}(2 \leqq \mathrm{i}<\infty)$ ．Then clearly we obtain $b a=1$（identity map），hence $R a=$ R ．If we define $c \in \mathrm{R}$ by $e_{1} \longmapsto e_{1}$ and $e_{1} \longmapsto \longrightarrow(2 \leqq$ $\mathrm{i}<\infty)$ ，then $c a=0$ ，so $\mathrm{A}_{1}(a) \neq 0$ ．

But we shall show that（A）and（B）are equivalent if R is both left Noetherian and left Artinian．

Theorem 3．1 If $\mathrm{S}(\mathrm{R}) \neq \phi$ ，the following conditions are equivalent．
（1）$S(R)=T(R)$ ．
（2）A left R －endomorphism $f: \mathrm{R} \longrightarrow \mathrm{R}$ is injec－ tive when and only when it is surjective．
（3）（i）R is the only left ideal of R which is isomorphic to R as left R－modules，and（ii）$A=0$ is the only left ideal which satisfies $R / A \cong R$ as left R －modules．

Proof．（1）$\longrightarrow(2)$ Choose $a \in \mathrm{~S}(\mathrm{R})$ ，and let $f: \mathrm{R}$ $\longrightarrow R$ be an injective left R－endomorphism．If we put $f(a)=b$ ，then $\mathrm{A}_{l}(b)=0$ ，hence we get $\mathrm{R} b=\mathrm{R}$ ． Let r be an arbitrary element of R ，then there exists． $s \in \mathrm{R}$ such that $r=s b$ ．So $r=s f(a)=f(s a)$ ，which implies that f is surjective．

Next suppose that $f: \mathrm{R} \longrightarrow \mathrm{R}$ is a surjective left R－endomorphism．Since $\mathrm{R}=f(\mathrm{R})=f(\mathrm{R} a)=\mathrm{R} b, \mathrm{~A}_{l}$ $(b)=0$ ．Let x be an element of $\operatorname{Ker}(f)$ ．There exists $y \in \mathrm{R}$ such that $x=y a$ ，so $0=f(x)=f(y a)=y f(\mathrm{a})=$ $y b$ ．It follows that $y=0$ ，hence f is injective．
$(2) \longrightarrow(3)$ Let A be a left ideal of R and $\varphi: \mathrm{R} \longrightarrow \mathrm{A}$ be a left R －isomorphism．If we denote the natural injection from A to R by j ，then $j \circ \varphi: \mathrm{R} \longrightarrow \mathrm{R}$ is injective，hence surjective．That is，$A=R$ ．

Next suppose that A is a left ideal of R and there exists a left R －isomorphism $\psi: \mathrm{R} / \mathrm{A} \longrightarrow \mathrm{R}$ ．Let $\pi: \mathrm{R}$ $\longrightarrow R / A$ be the natural projection，then $\psi \cdot \pi: R$ $\longrightarrow R$ is surjective．Hence it is injective and $A=$ $\operatorname{Ker}(\psi \circ \pi)=0$ ．
$(3) \longrightarrow(1)$ is clear from $\mathrm{R} a \cong \mathrm{R} / \mathrm{A}_{\iota}(a)$
Lemma 3．2（1）If a left R －module M satisfies the descending chain condition，then any injective left R －endomorphism of M is surjective．
（2）If a left R－module M satisfies the ascending chain condition，then any surjective left R －endomor－ phism of M is injective．

Proof．（1）Let $\varphi: \mathrm{M} \longrightarrow \mathrm{M}$ be an injective endomorphism．Since

$$
\mathrm{M}=\varphi^{0}(\mathrm{M}) \supseteqq \varphi(\mathrm{M}) \supseteqq \varphi^{2}(\mathrm{M}) \supseteqq \ldots,
$$

by the descending chain condition there exists $n \geqq 0$ such that $\varphi^{\mathrm{n}}(\mathrm{M})=\varphi^{\mathrm{n}+1}(\mathrm{M})$ ：suppose n is the least such integer．Let us assume $n \geqq 1$ ．If $m \in \varphi^{n-1}(\mathrm{M})$ ，there exists $m^{\prime} \epsilon \mathrm{M}$ such that $m=\varphi^{\mathrm{n}-1}\left(m^{\prime}\right)$ ．Also there exists $m^{\prime \prime} \in \mathrm{M}$ such that $\varphi(m)=\varphi^{\mathrm{n}}\left(m^{\prime}\right)=\varphi^{\mathrm{n}+1}\left(m^{\prime \prime}\right)$ ． Then $\varphi\left(m-\varphi^{\mathrm{n}}\left(m^{\prime \prime}\right)\right)=0$ ，which follows that $m=$
$\varphi^{\mathrm{n}}\left(m^{\prime \prime}\right)$ ，since φ is injective．So $\varphi^{\mathrm{n}-1}(\mathrm{M})=\varphi^{\mathrm{n}}(\mathrm{M})$ ， which contradicts the definition of n ．Therefore， $\mathrm{M}=$ $\varphi(\mathrm{M})$ ．
（2）Let $\psi: \mathrm{M} \longrightarrow \mathrm{M}$ be a surjective endomorphism． Since

$$
0=\operatorname{Ker}\left(\psi^{0}\right) \cong \operatorname{Ker}(\psi) \cong \operatorname{Ker}\left(\psi^{2}\right) \subseteq \ldots,
$$

there exists $n \geqq 0$ such that $\operatorname{Ker}\left(\psi^{n}\right)=\operatorname{Ker}\left(\psi^{n+1}\right)$ ： suppose n is the least such integer．Let us assume $n \geqq$ 1．If $a \in \operatorname{Ker}\left(\psi^{\mathrm{n}}\right)$ ，there exists $b \in \mathrm{M}$ such that $a=\psi(b)$ ． Since $\psi^{\mathrm{n}}(a)=\psi^{\mathrm{n}+1}(b)=0, b \in \operatorname{Ker}\left(\psi^{\mathrm{n}+1}\right)=\operatorname{Ker}\left(\psi^{\mathrm{n}}\right)$ ． Then $0=\psi^{\mathrm{n}}(b)=\psi^{\mathrm{n}-1}(\psi(b))=\psi^{\mathrm{n}-1}(a)$ ，which means $a \in \operatorname{Ker}\left(\psi^{\mathrm{n}-1}\right)$ ．So $\operatorname{Ker}\left(\psi^{\mathrm{n}-1}\right)=\operatorname{Ker}\left(\psi^{\mathrm{n}}\right)$ ，a contradic－ tion．Therefore $\operatorname{Ker}(\psi)=0$ ．
From this，we can get the following：
Theorem 3．3 If R is both left Noetherian and left Artinian，then $S(R)=T(R)$ ．

Proof．For each $a \in R$ ，we only have to apply the preceding lemma to the right multiplication map φ_{a} ： $x \longmapsto x a$ ．

§ 4

Definitions．When S is a semigroup and $a b=a$ holds for any $a, b \in \mathrm{~S}, \mathrm{~S}$ is called a left zero semigroup．The following fact is well－known（for instance，［7］pp． $77-80$ ）．A semigroup which satisfies such equivalent conditions is called a left group．

Lemma 4．1 When S is a semigroup，the following three conditions are equivalent．
（1）（ i） S has a right identity，and（ii）for any $a \in \mathrm{~S}$ and any right identity $e \in S$ ，there exists $x \in S$ such that $x a=e$ ．
（2）For any $a, b \in \mathrm{~S}$ ，there exists a unique $x \in \mathrm{~S}$ such that $x a=b$ ．
（3） S is isomorphic to the direct product of a group and a left zero semigroup．

Now we can state the following：
Theorem 4.2 （1）If $S(R)=T(R) \neq \phi$ ，then $S(R)$ is a left group．Hence，if R is both left Noetherian and left Artinian，$S(R)$ coincides with $T(R)$ and is a left group unless it is empty．
（2）When R is both left Noetherian and left Artinian，R has a right identity if and only if $S(R) \neq$ ϕ ．

Proof．（1）We shall show that $S(R)$ satisfies（2）of Lemma 4．1．Let $a, b \in \mathrm{~S}(\mathrm{R})$ ．Since $\mathrm{R} a=\mathrm{R} \epsilon b$ ，there exists $x \in \mathrm{R}$ such that $x a=b$ ．We have to show that $x \in \mathrm{~S}(\mathrm{R})$ ．If $x \in \mathrm{~S}(\mathrm{R})$ ，there exists a non－zero element $y \in \mathrm{R}$ such that $y x=0$ ，for $\mathrm{S}(\mathrm{R})=\mathrm{T}(\mathrm{R})$ ．Then $y x a=y b=0$ ， hence $\mathrm{A}_{\iota}(b) \neq 0$ ，which contradicts $b \in \mathrm{~S}(\mathrm{R})=\mathrm{T}(\mathrm{R})$ ．So $x \in \mathrm{~S}(\mathrm{R})$ ．Next assume that $x a=b$ and $x^{\prime} a=b$ ．Then $(x-x) a=0$ ，which follows $x=x^{\prime}$ ，since $x-x^{\prime} \in \mathrm{A}_{l}$ $(a)=0$ ．Thus $\mathrm{S}(\mathrm{R})$ is a left group．
（2）Suppose $\mathrm{S}(\mathrm{R})=\mathrm{T}(\mathrm{R}) \neq \phi$ ，then it is a left group，hence has a right identity e by Lemma 4．1． Since $R e=R$ ，e is a right identity of R ．

Corollary 4．3 If R has no left ideals other than 0 and R ，then R is either a division ring or a zero ring on a cyclic group of prime order．

Proof．If $\mathrm{R}^{2}=0$ ，then the additive group of R is a cyclic group of prime order since it is a simple Abelian group．So we can suppose there exists $a \in \mathrm{R}$ such that $\mathrm{R} a=\mathrm{R}$ ．By Theorem 4.2 R has a right identity，so R has an identity by Corollary 1．3．It is immediate that R is a division ring．

Let R be a ring such that $\mathrm{S}(\mathrm{R})=\mathrm{T}(\mathrm{R}) \neq \phi$ ，then $S(R)$ must be isomorphic to the direct product of a group and a left zero semigroup．Let e be a right identity of R and put $\mathrm{A}=e \mathrm{R}$ and $\mathrm{N}=\mathrm{A}_{\mathrm{r}}(\mathrm{R})$ ，then there exists an isomorphism $\varphi: R \longrightarrow\left[A ; N_{A}\right]$ ．If we identify R with $\left[\mathrm{A} ; \mathrm{N}_{\mathrm{A}}\right]$ by φ ，then we can write any element of R as (a, n) ，where $a \in \mathrm{~A}$ and $n \in \mathrm{~N}$ ． Suppose $\mathrm{R}_{\ni} s=(a, n)$ satisfies $\mathrm{R} s=\mathrm{R}$ ，then there exist $b \in \mathrm{~A}$ and $n^{\prime} \in \mathrm{N}$ such that $(b, n)(a, n)=\left(b a, n^{\prime} a\right)=$ （ $e, 0$ ），which follows that $b a=e$ ．Conversely，let n be an arbitrary element of N and $a \in \mathrm{~A}$ satisfy $b a=e$ for some $b \in \mathrm{~A}$ ．Then for any element (c, m) of R it holds that $(c b, m b)(a, n)=(c, m)$ ，so $s=(a, n)$ satisfies $R s=$ R．Hence，if we put $\mathrm{A}^{\prime}=\{a \in \mathrm{~A} \mid b a=e$ for some $b \in \mathrm{~A}\},(a, n) \in S(R)$ is equivalent to $a \in \mathrm{~A}^{\prime}$ ．

Let a be an arbitrary element of A^{\prime} ．As $(a, 0) \in \mathrm{S}(\mathrm{R})$ ， by Lemma 4.1 （2），there exist $a^{\prime} \in \mathrm{A}^{\prime}$ and $n \in \mathrm{~N}$ such that $\left(a^{\prime}, n\right)(a, 0)=\left(a^{\prime} a, n a\right)=(e, 0)$ ．It follows that $a^{\prime} a=e$ ． On the other hand，

$$
\begin{aligned}
(a, 0)\left(d^{\prime}, 0\right)(a, 0) & =\left(a a^{\prime}, 0\right)(a, 0) \\
& =(e, 0)(a, 0)
\end{aligned}
$$

Hence $a a^{\prime}=e$ by the uniqueness of Lemma 4.1 （2）．So A^{\prime} is nothing but the unit group A^{*} of A ．

Let us put $\mathrm{N}^{\prime}=\{(1, n) \mid n \in \mathrm{~N}\}$ and define $\mathrm{p}_{2}: \mathrm{S}^{\prime}=$ $\left\{(a, n) \mid a \in \mathrm{~A}^{*}, n \in \mathrm{~N}\right\} \longrightarrow \mathrm{N}^{\prime}$ by $(a, n) \longmapsto(1, n)$ ．
$\mathrm{p}_{1}: \mathrm{S}^{\prime} \longrightarrow \mathrm{A}^{*}$ is defined by $(a, n) \longmapsto a$ ．Thus we get the following commutative diagram of semigroups：

Here（ $e \mathrm{R})^{*}$ denotes the unit group of e ，and Z the left zero semigroup consisting of all right identities of R ． j and j^{\prime} are natural injections． $\left.\mathrm{p}_{1}^{\prime}=(\varphi \mid \text {（eR）})^{*}\right)^{-1} \cdot \mathrm{p}_{1}$ 。 $(\varphi \mid \mathrm{s}(\mathrm{R})), \mathrm{p}_{2}^{\prime}=(\varphi \mid \mathrm{z})^{-1} \circ \mathrm{p}_{2} \circ(\varphi \mid \mathrm{s}(\mathrm{R}))$ ． p_{1} and p_{2} are orthogonal（cf．［7］pp．76－77）．For，let $\Delta_{1}: S^{\prime}=\bigcup_{b \in A}$ U_{b} be the partition of S^{\prime} induced by p_{1} ，where $\mathrm{U}_{\mathrm{b}} \stackrel{ }{\mathrm{b} \in \mathrm{A}}=$
$\{(b, n) \mid n \in \mathrm{~N}\}$ ．Also let $\Delta_{2}: \mathrm{S}^{\prime}=\bigcup_{\mathrm{m} \in \mathrm{N}} \mathrm{V}_{\mathrm{m}}$ be the partition induced by p_{2} ，where $\mathrm{V}_{\mathrm{m}}=\left\{(a, m) \mid a \in \mathrm{~A}^{*}\right\}$ ．Then clearly $\mathrm{U}_{\mathrm{b}} \cap V_{\mathrm{m}}$ consists of only one element（ b, m ）． So Δ_{1} and Δ_{2} are orthogonal．Consequently S^{\prime} is isomorphic to the direct product of A^{*} and N^{\prime} ．
p_{1}^{\prime} and p_{2}^{\prime} are orthogonal，too，so $S(R)$ is iso－ morphic to the direct product of $(e \mathrm{R})^{*}$ and Z ．Note that A^{*} is isomorphic to the unit group of the left R －endomorphism ring of R by Lemma 1.1 （3）．So we get the following：

Theorem 4．4 If $S(R)=T(R) \neq \phi$ ，then $S(R)$ is iso－ morphic to the direct product of the unit group of the left R －endomorphism ring of R and the left zero semigroup consisting of all right identities of R ．

Note that if R is left Artinian moreover，then Z is a finite set by Theorem 1．5．

Theorem 4．5 If R is both left Noetherian and left Artinian，then the following three conditions are equivalent．
（1） R has a right identity．
（2）There exists $a \in \mathrm{R}$ such that $\mathrm{R} a=\mathrm{R}$ ．
（3）For any $a \in \mathrm{R}$ ，there exists $b \in \mathrm{R}$ such that $a b=$ a ．

Proof．Clear from Theorem 2.4 and Theorem 4.2 （2）．

References

［1］C．Hopkins，Rings with minimal condition for left ideals，Ann．of Math．， 40 （1939），712－730．
［2］R．Baer，Kriterien für：die Existenz eines Ein－ selementes in Ringen，Math．Z． 56 （1952），1－17．
［3］N．Ganesan，Properties of rings with a finite number of zero divisors，Math．Ann． 157 （1964）， 215 －218．
［4］N．Ganesan，Properties of rings with a finite number of zero divisors II，Math．Ann． 161 （1965）， 241 －246．
［5］F．Szász，Einige Kriterien für die Existenz des Einselementes in einem Ring，Acta Sci．Math． （Szeged） 28 （1967），31－37．
［6］E．A．Behrens，Ring Theory，Academic Press， 1972.
［7］T．Tamura，Theory of Semigroups（in Japa－ nese），Kyōritsu， 1972.
［8］F．Hansen，Die Existenz der Eins in noether－ schen Ringen，Arch．Math． 25 （1974），589－590．
（Received January 16，1980）

