シリコン基板上窒化物半導体の高品質化に関する研究 Growth of high quality III-nitrides on silicon substrate

澤木宣彦[†],岩田博之[†],川北将吾[†],本田善央^{††} Nobuhiko Sawaki[†], Hiroyuki Iwata[†], Shogo Kawakita[†], and Yoshio Honda^{††}

Abstract Growth of a high quality GaN on a silicon substrate has been attempted. In order to prevent Ga-Si reaction at high temperatures, an AlInN alloy was tested as the intermediate layer between the GaN grown layer and the Si substrate. It was found that a film as thin as 6nm reduces the threading dislocation density in the GaN top layer. In a carbon doped AlGaN on Si, FTIR spectra showed a new specific signal at 945cm⁻¹ following a strong signal at 888cm⁻¹ due to Al-N bond. The new signal was attributed to the LVM due to Al-C bond. This suggests that the carbon has been doped on the nitrogen site to be an acceptor in the AlGaN.

1. 緒言

革新的省エネルギー技術への世界的な期待は、アジア・ アフリカなど発展途上国といわれた国々でも最新の電子 機器が普及し、過去100年における人口の爆発的な増加を 背景に地球規模でのエネルギー消費量が予想を遥かに超 える速度で増加していることへの危機感によるものであ る。半世紀前に発明された半導体技術はここ50年間に亘 って、情報・制御技術の革新を促し、産業構造のみならず 生活様式の変革をももたらした。それは、個々の機器にお ける高効率化・省エネルギー化に極めて大きな貢献をして きたにもかかわらず、利用される機器総数の増加がそれを 上回り、結果としてエネルギー総消費量の増加を招く結果 となった。

シリコンを基材とする半導体集積回路(電子)技術には、 GaAs などの化合物半導体による光技術が統合され、電子 光産業という新しい分野を創り出したが、エネルギーを制 御する部分は依然としてシリコン素子が使われている。即 ち、ハブリッド自動車(HV)の登場で自家用自動車のエネ ルギー効率は大きく進歩したが、インバータなどのシリコ ン電子制御回路の効率には尚改善の余地がある。また、次 世代の発電様式として期待され、各所での設置が進められ ている Si 太陽電池の効率は 20%程度とこれも改善の必要 がある。シリコンはエネルギーバンドギャップが小さく、 温度上昇に十分対応できない点にその課題がある。

本研究は、広いエネルギーバンドギャップを有する III 族窒化物半導体材料に関する。窒化物半導体は青色 LED 材 料として開発され、緑色、赤色と共に三原色 LED の構成を 可能としフルカラーディスプレイや交通信号機の高度化 に大きく貢献した。現在では、省エネルギーを可能とする 白色 LED に用いられている。同材料は天然に存在せず、有 機金属気相成長法(MOVPE)により適切な基板上にエピタキ シャル成長で作製されている。上記白色 LED の作製はサフ アイア基板上に作製されるため、作製コストが高止まりし ている。本研究では、シリコン基板上への高品質 GaN の作 製技術を確立することによって、白色 LED、インバータ用 トランジスタ、高効率太陽電池の開発に貢献することをめ ざしている[1]。そのために、シリコン基板上での高品質 GaN の作製のための緩衝層技術の確立、高濃度 p 形伝導 AlGaN の作製技術の確立を目的として、TEM ならびに FTIR 法により結晶の評価を行った。

2. AlInN 緩衝層の最適化

2.1 GaN/AlInN/SiのMOVPE 成長

GaN はウルツ鉱であるが Si は立方晶であるため、シリ コン基板上への GaN 直接成長はできない。さらに、GaN と Si とは高温でよく反応し GaSiN 混合物を生成する。こ のため、1000℃程度の成長温度で安定的に GaN をエピタ キシャル成長させるために緩衝層が必要である。本研究で

 ^{*} 愛知工業大学 工学部 電気学科 (豊田市)
 * * 名古屋大学 大学院工学研究科 (名古屋市)

は、緩衝層として Ga 元素を含まない AlInN 混晶の可能性 を検討した。エピタキシャル成長は名古屋大学大学院工学 研究科クリーンルームで行った[2]。

用いた試料の概要を表1に示す。成長温度でSi 基板表 面は容易に酸化あるいは窒化するため、成長前に、最表面 にはAlを吹きつけ、更に窒素を供給することにより薄い AlN 膜を形成した。その上にAlInN 緩衝膜を形成し、GaN を成長させた。

表1 GaN/AlInN/AlN/Si 試料の緩衝層膜厚

	AlInN 成長時間	AlInN 膜厚	基板	
#1	5min	6nm	(111)Si	
# 2	10	13	(111)Si	

2.2 TEM 観察

本実験では、AlInN 緩衝層の効果を検証するため、AlInN 成長時間を変化(よって、AlInN 膜厚を変化)させ、上部 GaN 層に誘起する貫通転位を TEM 観察により評価した。 TEM 観察は愛知工業大学総合技術研究所に設置されてい る透過電子顕微鏡 JEM-2010 を用いた。図1に異なる厚 さのAlInN緩衝層を経て成長した試料の断面 TEM 像の典型 例を示す。

図1 AlInN/Si(111)のTEM明視野像: AlInNの厚さ(a)6nm, (b) 13nm.

明視野増で明らかなように、緩衝層が 6nm と薄い方が GaN層の貫通転位密度が低いことが判る。さらに、緩衝層 が薄い場合には、コントラストから推定される界面付近の ミスフィット転位を起源とする欠陥の多くがAlInN緩衝層 内で消滅することも見てとれる。この結果から、薄い緩衝 層を用いることによって、転位密度の低い高品質な GaN エ ピタキシャル膜が得られると結論できる

次に欠陥の種類を同定するため、暗視野像を評価した。 結果の一例を図2に示す。欠陥のバーガーベクトルkと回 折スポットのgベクトルとの間の選択則 g・k=0の間 系から試料には刃状転位、螺旋転位、混合転位の3種類が あることが見てとれる。

(b)

図2 AlInN/Si(111)のTEM 暗視野像: AlInN厚さ6nm、(a)g=<0002>、(b)g=<1-100>

3. AlGaN/Si への不純物ドーピング特性

3.1 AlGaN(1-101)/AlN/Si(111)の MOVPE 成長

現在実用化されている GaN 系デバイスのほとんどはサフ アイア(0001)基板上に作製した(0001)GaN を用いている。そ のため、AlGaN/GaN トランジスタでは強いピエゾ電界の影 響を受け、パワーデバイスの特性として要求されるノーマ リオフ形を作製するためには複雑な構造を強いられてい る。我々はピエゾ電界効果が小さな半極性(1-101)面の可能 性を検討している。本研究では、AlGaN(1-101)面における 不純物ドーピング特性を評価した。試料作製は名古屋大学 大学院工学研究科クリーンルームで行った。

先ず、(111)Si 基板上で(1-101)半極性面を得るために、SiO₂ ストライプマスクパターンを作製し、その窓領域に GaN 選 択 MOVPE 成長を行った[3]。ストライプの方向を GaN の <11-20>方向と一致させることにより、得られる GaN ストラ イプの側面を(1-101)面とすることができる。この GaN(1-101)面上に AlGaN を成長させた[3]。成長時に CCl₄、 または C₂H₂を成長炉に導入することにより炭素ドーピング を試みた。試料の PL あるいは CL 特性には、AlGaN のバン ド端発光に炭素ドーピングによる浅い準位からの発光が認 められ、 p 形ドーピングが行われていることが確認されて いる。本実験ではこの試料の FTIR 評価を行い、炭素のドー ピング形態を評価した。

3.2 GaN: C の FTIR スペクトル

先ず比較すべき基準データ取得のため、(001)Si 基板上に 成長した(1-101)GaN の FTIR 特性を評価した。測定は、日本 分光 FTIR620-IRT3000 を用い、測定感度を上げるため斜め 入射による反射吸収法(RAS)を用いた。顕微分光のアパーチ ャサイズは100μm 角とした。

この実験では炭素のドーピング量が異なる3種類の試料 を評価した。500~800cm⁻¹には GaN のホノンモードに対応 する典型的な信号に加えて、800~1300cm⁻¹のエネルギー領 域には、緩衝層として AIN を用いていること、マスク膜と して SiO₂ 膜を用いていることなどによると推定される特徴 的な信号が得られた。

GaN の典型的なスペクトルを図3に示す。図に見られる、 888cm⁻¹の強い信号は AIN の A₁(LO)モードによるものであ る。全ての試料で 945cm-1 に信号が見出された。この信号 は、Mg ドーピング試料でも見出されているが、SIMS 測定 などの評価結果から、炭素が関与した局在モードによるも のと推定される。

3.3 A1GaN: C の FTIR スペクトル

次に上記 AlGaN(1-101):C の FTIR スペクトルを測定した。 図4には垂直入射による吸収スペクトルを示す。670cm⁻¹に 見られる強い信号は AlN の E₁(TO)モードが顕在化したもの と解釈される。この試料の RAS スペクトルを図5に示す。 888cm⁻¹に見える AlN の A₁(LO)モードの信号は強くなり、 945cm⁻¹には僅かに炭素によると思われる信号が見える。こ の信号は、炭素をドープした試料ほど強いことが見てとれ る。GaN や AlGaN の MOVPE 成長では原料に有機金属化合 物を用いるため、成長条件によっては炭素がオートドープ されることが知られている。本実験で得られた弱い信号は、 この効果によるものと推察される。事実、SIMS 測定では炭 素原料を導入することにより炭素濃度が増加するものの、 炭素原料をゼロにしても SIMS による炭素濃度はゼロにな らないことが判っている。

図4 AlGaN:CのFTIR スペクトル(垂直入射)

図 5 AlGaN:C の FTIR スペクトル (RAS)

3.4 AlGaN の局在モード(LVM)

炭素ドーピングにより見出された 945 cm^{-1} の信号の特徴 は 888 cm^{-1} にある AlN の A₁(LO)ホノンの信号に付随して見 出されることである。このことは、945 cm^{-1} の信号が窒素サ イトを置換した炭素が Al-C ボンドを形成し、局在モード (LVM)が現れたことを示唆する。線形近似による LVM 振動 エネルギーは $ho^2 = f\{(m_c + m_{Al})/m_cm_{Al}\}$ で近似できる。こ こで、f は力学定数、 m_c 、 m_{Al} はそれぞれ C イオンと Al イオンの質量である。力学定数を AlN ボンドの値で代用す ると AlC の LVM の振動エネルギーは 929 cm^{-1} と予想され る。実験結果に近い値が得られたことは上記予想を支持す る。

4. 結言

現在最も高品質で大面積基板が得られ、かつ微細加工技 術が進歩したシリコン基板上に、最も加工技術が未熟であ る窒化物結晶を成長させることにより、窒化物結晶の高品 質化を達成する技術の確立をめざし、MOVPE 選択成長法に よる自己形成窒化物結晶多面体結晶の育成手法を拡張し、 半極性(1-101)面 GaN の高品質化法と不純物ドーピング特性 を検討した。Ga を含まない AlInN 混晶薄膜が緩衝層として 有効であること、薄い緩衝層により貫通転位の少ない高品 質結晶が得られることが TEM 観察から明らかになった。

現在、窒化物へのp形ドーピング元素は Mg に限定され ている。AlGaN などバンドギャップの大きな混晶材料では 活性化エネルギーが大きくデバイスの特性を損なう起源と なっているため、新しいドーピング元素の開拓が渇望され ているが、本研究で炭素がその候補になり得ることを示した。FTIR 解析により炭素は Al とのボンドを形成し窒素サイトを置換していることが示唆された。

謝辞

本研究は、平成 22 年度文部科学省私立大学戦略的研究基盤 形成支援プロジェクトS1001033 ならびに日本学術振興会科 学研究費補助金基盤研究(B)22360009 の援助を受けて行わ れた。MOVPE 装置による結晶成長は名古屋大学大学院工学 研究科クリーンルームで行われた。試料作製にご協力頂い た同大学院生、小出典克氏、彦坂年輝氏、谷川智之氏、入 江将嗣氏に紙面を借りて感謝する。

参考文献

[1] N.Sawaki, T.Hikosaka, N.Koide, S.Tanaka, Y.Honda, and M.Yamaguch, "Growth and properties of semi-polar GaN on a patterned silicon substrate," Journal of Crystal Growth 311 (2009) 2867–2874.

[2] M.Irie, N.Koide, Y.Honda, M.Yamaguchi, and N.Sawaki,
"MOVPE growth and properties of GaN on (111)Si using an AlInN intermediatelayer," Journal of Crystal Growth 311 (2009) 2891–2894.

[3] N.Koide, T.Hikosaka, Y.Honda, M.Yamaguchi, and
 N.Sawaki, "Incorporation of carbon on a (1-101) facet of GaN by
 MOVPE," Journal of Crystal Growth 284 (2005) 341–346.