第3世代太陽電池の改良に関する研究開発

Research and development about the improvement of the third generation solar cells

伊名田 剛司[†], 松村 直已[†], 奥田 孝雄[†], 岸 政七^{††} Takeshi Inada[†], Naomi Matsumura[†], Takao Okuda[†], Masahichi Kishi^{††}

Abstract The method for improving a conversion efficiency of dye-sensitized solar cell was studied. The anode electrode was made by dipping Ru535-bis-TBA (N719) after heating the ITO glass spread with $TiO_2(ST-21)$ paste at 723K, whereas, the cathode electrode was prepared by coating a carbon powder on the Pt-Pd alloy sputtered ITO glass. Electrolyte Solution was provided by Acetonitrile for a solvent adding Iodine, Lithium Iodide, and Tetrabutylammonium Iodide. Various attempts have been made to get 4.8% conversion efficiency. However precise control of conditions seemed to be necessary to obtain the steady value of efficiency.

1. はじめに

近年ますます異常気象・砂漠化などの地球環境問題は深 刻化している。原因として、二酸化炭素等の温室効果ガス の排出などがあげられる。さらに今後数十年で化石エネル ギーの枯渇が危惧されている。

これらの解決策の一つとして風力・地熱・太陽光などを 利用したクリーンエネルギーの活用が期待され、現在これ らを応用する研究・開発が盛んに行われている。

これらは、IPCC 第4次評価報告書などでも地球温暖化 対策の一環として挙げられ、その効果は数ある緩和手段の 中でも大きい部類に入るとされている^{*1}。

太陽電池は従来シリコン系が主流であるが、一方、色素 増感太陽電池は、発電時の環境負荷がない、地球温暖化の 原因となる二酸化炭素を排出しない、理論上の最大光電変 換効率(33%)^{*2}がシリコン太陽電池(29%)よりも高いこ となど、次世代のエネルギー源として非常に大きな期待が あり、一部では販売も開始されている^{*3}。

2. 色素増感太陽電池の構造と動作原理*4

色素増感型太陽電池は、原理的に、ワイドバンドギャッ プ半導体の色素増感現象を利用しており、透明導電膜付き

	†	高槻電器工業株式会社	(久世郡久御山町)
--	---	------------	-----------

†† 愛知工業大学 総合技術研究所 (豊田市)

ガラス・電解液・酸化チタン(アナターゼ結晶型酸化チタ ンTiO₂)・色素により構成される。図1に示すように、光 が色素に当たると色素が励起され自由電子が生じる。発生 した自由電子は酸化チタンに受け渡され、透明導電膜付ガ ラスへと移動する。透明導電膜付きガラスに移動した自由 電子は負荷を経由し、対向する白金などをコートしたカソ ード電極へ移動する。

光を受けた色素分子では、束縛されていた色素分子の価 電子帯の電子が導電帯へ移動し自由電子を発生するが、同 時に価電子帯には電子の抜け殻、すなわちホールが発生す る。ホールは電解液のヨウ素イオンから電子を奪い、色素 分子はもとの状態に戻る。

Fig.1 Operating concept of dye sensitized solar cell

電子を失って酸化されたヨウ素はヨウ素イオンとなるが、 カソード電極から電子を授与され還元される。 光が当たり続ける限り、この一連の動作を繰り返す。

3. 実験方法

3.1 色素増感太陽電池の作製

本研究は、愛知工業大学・タイレックス工業株式会社の 開発^{*5}中の量子触媒を用いる第4世代太陽電池の開発・製 造を最終目標としている。第4世代太陽電池を効果的に開 発するために、既存の第3世代太陽電池の各種製造パラメ ータが変換効率に及ぼす特性を明らかにすることを目的 に予察研究を実施した。第3世代太陽電池・色素増感太陽 電池の主要物質としての光触媒に石原産業製 ST-21 を使 用した。ST-21 は、平均粒径 21nm のアナターゼ酸化チタ ンであり、凝集力が比較的弱く試作ハンドリングが容易で あるので選定した。

Table 1 Composition of TiO₂ paste.

材料名	使用量, g
TiO ₂ 粉末(ST-21)	3.59
アセチルアセトン	0.12
20%界面活性剤 (TritonX100)	0.064
純水	6.23
PEG	0.52

酸化チタンペースト、ST-21をボールミルにて1時間攪拌 し調製した。この酸化チタンペーストの組成を表1に示す。 アノード電極は、面抵抗5Ω/squareの透明導電膜(ITO)付 きガラスを20mm角に切断、エタノール中で超音波洗浄し た後、5mm角(有効塗布面積0.25cm²)で酸化チタンペー ストをスキージ法で塗布、3分程度乾燥させ、さらに約450℃ の加熱炉に入れ作製した。なお、焼成時間は第1の実験パ ラメータとなる。続いて、焼成層に、表2に示す配合で作 製した色素溶液を含浸させアノード電極とした。

Table 2 Composition of solution of dye.

材料名	使用量
Ruthenium 535-bis TBA(N719)	0.018g
エタノール	50ml

色素溶液は、solaronix 社製 Ru535+bis+TBA (N719 色素) を無水エタノールで濃度 300µmol/l に希釈した。この色素溶 液に、焼成アノード電極をガラス板ごと漬けて、常温・大 気圧下で色素を吸着させた。含浸時間が、第2の実験パラ メータとなる。 また、組立て精度誤差の影響を調べるために、同一組立 条件で4個の太陽電池を作製し、この4個を1組のサンプ ルとし、サンプル内の変換効率のバラツキを調べた。

カソード電極は、アノード電極と同様に透明導電膜(ITO) 付きガラスを用い、ITO 膜にPt-Pdをスパッタして製造した。 Pt-Pd 合金の配合比率は、Pt: Pd = 30wt%:70wt%であり、 Pt-Pd コート膜厚は約 50nm とした。

さらに、Pt-Pd コート膜にカーボン塗布し、カーボン塗布 が与える影響も調べた。

太陽電池は、アノード電極とカソード電極の間に、0.1 mm 厚のビニール製スペーサを挟むという簡便な方法で組み立てた。分離膜を用いて変換効率を向上させる方法が開発されているが、今回は単純な構造とし、変換効率に及ぼす要因の増大を防いだ。

電極を組み立てたのち、表3に示す組成で調製した電解 液を電極とスペーサの隙間に気泡が残留しないよう注入し て、実験用第3世代太陽電池を組立てた。図2に、本研究 で採用した太陽電池の構造を示す。

Table 3 Composition of electrolyte solution.

材料名	使用量
ヨウ化リチウム(LiI)	0.134g
ヨウ素(I ₂)	0.127g
4,tert-ブチルピリジン	0.676g
テトラブチルアンモニウムヨージド	1.847g
アセトニトリル	10ml

3.2 変換効率の測定

本研究では、太陽電池測定用の光源として、ハロゲンラ ンプとメタルハライドランプ、さらに、一部サンプルにお いては、ソーラーシミュレータを用いた変換効率の測定を 行った。

Fig.2 Typical structure of experimental dye-sensitized solar cell.

3.2.1 ハロゲンランプでの変換効率の測定

ハロゲンランプ(GTHT-150S)での測定は、光源からサンプ ルまでの距離を 20cm として測定した。光源の校正には TAMIYA 製の太陽電池 (Solar Battery 0.5V-1200mA Item No: 76002)を使用しており、この太陽電池の光電変換効 率を 10%と仮定して、対象サンプルの変換効率を見積もっ た。

上記太陽電池の測定結果より導出したハロゲンランプ光 源から 20cm 離れた位置での光エネルギーは、16mW/cm² と 算定された。以降は、この値を利用して、変換効率の計算 を行った。

3.2.2 ソーラーシミュレータでの変換効率の測定

ー部サンプルにおいては、ソーラーシミュレータでの測 定を行った。使用したソーラーシミュレータは朝日分光株 式会社のアモルファスシリコン用 HAL-302 であり、光エネ ルギーの校正は、ハロゲンランプの測定時と同じ太陽電池 (Solar Battery 0.5V-1200mA Item No: 76002)を用いた。ソ ーラーシミュレータによる変換効率は、外部機関の測定装 置において校正用 Si 太陽電池(SOLAR Battery 0.5V-1200mA Item No: 76002)の測定を依頼し、その結果である6.8%を HAL-302 による変換効率であると仮定することにより、ソ ーラーシミュレータからの光出力を逆算し、試料に照射さ れる光エネルギーが100mW/cm²となるようにソーラーシミ ュレータに内臓のNDフィルターを用いて調整した。これ を基準として被測定試料の光電変換効率を見積もった。

3.2.3 メタルハライドランプでの変換効率の測定

メタルハライドランプ(Philips 社 CDM-T 150W/942)で の測定では、一定光量として、ペクセルテクノロジーズ PEC - SI01 標準 Si セルを用いて入射光エネルギーが単位面 積当たり 100 mW/cm²となるように調整し、標準測定値を確

Fig.3 Schematic diagram of the conversion efficiency measurement system for experimental dye sensitized solar cell.

定した。

変換効率は、一定照射エネルギー量を試作太陽電池に照 射して、図.3 に示す回路中の可変抵抗を調整して、I-V 特性 を測定することで、式1から求めることができる。 変換効率*η*は、次式1で与えられる。

$$\eta = \frac{P_m}{P_{in}} = \frac{V_m I_m}{P_{in}} = \frac{V_{OC} I_{SC} FF}{P_{in}}$$
(1)

 P_m :太陽電池から取り出せる最大電力、[W] P_{in} :太陽電池への入射最大電力、[W] V_m :最大電力を取り出せる電圧値、[V] I_m :最大電力を取り出せる電流値、[A] V_{OC} :開放電圧、[V] I_{SC} :短絡電流、[A] FF:フィルファクター

4. 第3世代色素増感太陽電池の最適化

第3世代色素増感太陽電池の最適化は、変換効率を評価 関数として、次の4種のパラメータ;1.カソード電極の カーボン塗布の有無、2. Pt-Pd コートの有無、3.アノ ード電極の酸化チタン焼成時間、4. 焼成酸化チタン層へ の色素吸着時間を変化させて、最大変換効率を得る条件を 求めることで実施した。

4.1 カソード電極ITO 膜上へのカーボン塗布効果

カソード電極へのカーボン塗布効果を確認するため、カ ーボンを塗布すること無く試作した太陽電池:試料 No.98 の I-V 特性を図 4 に示す。また、カソード電極に用いた透 明導電膜付きガラス上にカーボン塗布した試作太陽電 池:試料 No.99 の I-V 特性を図 5 に示す。

両太陽電池の作製条件を表 4 に示す。

Fig.4 The I-V characteristics of the experimental solar cell, No.98, without employing carbon coated cathode

	No.98	No.99
TiO ₂ ペースト	ST-21(Table 1 の組 成)	ST-21(Table 1 の組 成)
加熱条件	450°C 30min	450°C 30min
カソード 電極	ITO 付ガラス	ITO 付ガラス+カー ボン塗布
色素	Ru535-bis TBA(N719) 通常吸着(9h)	Ru535-bis TBA(N719) 通常吸着(9h)
電解液	Table 3 参照	Table 3 のもの
スペーサ	塩化ビニールシー ト 0.1mm TiO ₂ 領域フィット 構造	塩化ビニールシート 0.1mm TiO ₂ 領域フィット構 造
TiO ₂ 塗布 サイズ	5mm×5mm	5mm×5mm

Table 4 Manufacture condition.

I-V 特性測定は、試料番号 No.99 と No.98 の太陽電池に ハロゲンランプ光(0.016W/cm²)を照射して実施した。

図4と5を比較すれば明かになるように、カソード電極 へのカーボン塗布は、太陽電池の変換効率を効果的に改善 する。

これは、カーボンの微粒子によりカソード電極の表面積 が大きくなり、電子の電極から電解液への授受が効率的に 行われるようになることに起因すると考えられる。

カーボン塗布効果を多くの試作太陽電池で確認できた ため、以降の試作では、特に断りのない限り、高い変換効 率を獲得するため、カソード電極にカーボンを塗布して太 陽電池を作製することとした。

4.2 カソード電極へのPt-Pd コート効果

次に、カソード電極に使用した透明導電膜付きガラスの

Fig.5 The I-V characteristics of the experimental sample, No.99, with employing carbon coated cathode

ITO 膜に対する Pt-Pd スパッタリングが変換効率に及ぼす 効果を、ソーラーシミュレータを用いて I-V 特性を測定す ることで確認した。

Pt-Pd コートを施さず試作した太陽電池、試料 No.99 の I-V 特性を図 6 に、Pt-Pd コートを施した太陽電池、試料 No.100 の I-V 特性を図 7 に示す。

Fig.6 The I-V characteristics of the experimental solar cell, No.99, without employing Pt-Pd coated cathode in Solar simulator irradiation.

Fig.7 The I-V characteristics of the experimental solar cell, No.100, with employing Pt-Pd coated cathode in solar simulator irradiation.

Fig.8 The averaged conversion efficiency characteristics as taking ITO glass baking time as parameters

図 6 に示すように Pt-Pd コートを施さない試料太陽電 池、No.99 の変換効率は 0.545% であった。一方、Pt-Pd コ ートを施した太陽電池、No.100 では、変換効率が 2.87%. と 3 倍程度に改善された。

節 4.1 と 4.2 の検討結果を反映し、カソード電極に、カ ーボン塗布および/ Pt-Pd コーティング/ ITO ガラス基板 を用いて以降の研究を進めることにした。

4.3 酸化チタン焼成時間に関する考察

アノード電極は酸化チタンペーストを焼成して製造す る。焼成条件に対する変換効率特性を調べた。焼成の加熱 温度は一定値 723K に保ち、加熱時間を変化させた時の変 換効率ηの変化を図8に示す。

図 8 に示すように、一般的な加熱温度 450℃(723K)、 加熱時間 30 分の場合^{*6 ~*12}、太陽電池の変換効率は 1.7%程 度と低い値に留った。一方、同一加熱温度で加熱時間を一 般的な 30 分より長時間加熱すると、3 時間程度までは略単 調に変換効率が増大した。

アノード電極に用いている透明導電膜(ITO)は、加熱 でシート抵抗値が増大し、太陽電池の変換効率を劣化させ る要因になることが知られている。加熱が及ぼす ITO シー ト抵抗への影響を調べた。従来から良く用いられている加 熱時間 30 分近傍の加熱温度特性を調べた結果を図 9 に示 す。

シート抵抗 4~8 Ωの ITO 膜は、加熱温度が 300℃を超え た領域では加熱温度に対して単調増加傾向を示した。

一方、図8に示したように、ITO 膜への酸化チタン加熱 温度を450℃と固定し加熱時間を30分以上と長時間とする 時、変換効率が改善される。加熱によってITO 膜のシート 抵抗値が増大し、それに伴い内部抵抗が増大し電力出力が 減少し太陽電池の変換効率が低下する現象を打ち消す以上 のアノード極の改善効果が、酸化チタン加熱時間の長時間 化で得られることを示している。

Fig.9 The averaged conversion efficiency characteristics as taking ITO glass baking temperature as parameter

Table 5 Making condition of dye sensitized solar cell made for trial purposes

酸化チタン ペースト	主原料:酸化チタン ST-21 組成は Table 1 に示す
カソード電極	Pt-Pd スパッタ処理(50nm) ITO 膜にカーボン塗布
色素	Ru535+bis+TBA(N719) 組成は Table 2 に示す 吸着時間 : 約 19h
電解液	組成は Table 3 に示す
スペーサ	0.1mm ビニールシート

改善効果は、例えば、酸化チタンペーストが焼成される ことで酸化チタンペースト成分が適度に焼成され、酸化チ タン結晶が多孔質構造を成し、アノード極の酸化チタン面 積が増大したことが寄与したものと考えられる。

4.4 酸化チタン層への色素吸着量の最適

加熱時間を40分、加熱温度を450℃として焼成したアノード極の酸化チタン層への色素吸着量の最適化条件を、変換効率を評価量として求めた。

図 10 に示すように、焼成電極の色素溶液への含浸時間 が、20 時間近傍で最大変換効率が得られることが明らかに なった。

酸化チタン層に色素が最適量を超え付着させると、入射 光が深部に達しないことにより光電変換に関与する酸化チ タン量が等価的に減少するため、変換効率が劣化するもの と思われる。逆に、最適色素量より少なく付着した場合は、 入射光の光電変換に関与するイオン化作用が減少するた め、変換効率が減少するものと思われる。

Fig.10 The average conversion efficiency characteristics as taking dipping time of anode dye as parameter

この相反する条件のトレードオフから、20時間含浸の最 適色素量が求められる。

5. 第3世代色素増感太陽電池の試作結果

4章で検討した最適化条件を満たす第3世代色素増感太 陽電池を試作した。

試作太陽電池のハロゲンランプ照射時の I-V 特性を図 11 に示す。同図から、開放電圧=0.75V、短絡電流 =11.4mA/cm²、FF=0.56 であることが分かる。また、変換 効率は4.8%と求められる。

表 5 に示す同一条件で4 個の太陽電池を同時に作製し た。これら4 個の太陽電池の其々の変換効率は、図 12 に 示すように、太陽電池間での変換効率のバラつきが2倍程 度に達している。同条件で作製したにもかかわらず、変換 効率かバラつくことは、実用化に向けた課題として残され る。安定した変換効率を得るためには、製造技術の精密化 で十分対応可能であると考えている。

作製した太陽電池の一例を、図 13 に示す。

光触媒・酸化チタンと色素を組み合わせたアノード電極構 造は、原理的に耐久性に劣ることに危惧される。

今後は、色素を必ずしも必要としない量子触媒をアノー ド電極に適用すれば、耐久性と変換効率の飛躍的な改善が 期待される。

謝辞 太陽電池試作にあたり終始ご指導頂いたタイレ ックス工業株式会社の関係各位に心よりお礼申し上げま す。また、実験機材を貸与いただきましたタイレックス工 業株式会社 櫻本悦男様・伊藤康男様に御礼申し上げます。

Fig.11 The typical I-V characteristics of the experimental dye sensitized solar cells under metal halide lamp irradiation.

Fig.12 Conversion efficiencies variation among the four experimental samples, No.144a~d made by same specification

Fig13. The top-view of experimental dye-sensitized solar cell, No.144

参考文献

- 1) http://www.env.go.jp/earth/ipcc/4th_rep.html,(環境庁)
- 2) 荒川裕則 "色素增感太陽電池" pp.30-32
- 3) http://www.solaronix.com/products/dyesolarcells/
- C. Barbe, F. Arendse, P. Comte, M. Jirousek, F.Lenzmann, V. Shklover, M. Graetzel, J.Am. Seram. Soc., 80, 3157(1997)
- 5) 岸政七, "量子触媒タイレックスとその特性", 愛総研・ 研究報告 第11号(2009)
- 6) 海野 雅史, 公開特許広報(A), 特開 2008-63390

7) Shota Kosaka, Tomomichi Nishino, "酸化亜 鉛を用いた色素増感太陽電池に関する基礎 的研究",秋田高専研究紀要第44号,pp70-74
8) Yosuke Ishiyama, Tomomichi Nishino, "色素 増感太陽電池の電極作成",秋田高専研究紀 要第43号,pp.83-88

9) 瀬戸川城将,山本裕之,"いろいろな天然 色素を用いた色素増感太陽電池の作製と学 生実験や出前授業への導入",福井工業高等 専門学校研究紀要, pp.63-66

10) 村山正樹, 井上幸司, "色素増感太陽電 池の長期耐久性試験", 三重県科学技術振興 センター工業研究部研究報告 No.31(2007), pp.51-55

11) 小坂翔太,西野智路,"酸化亜鉛を用いた色素増感太陽電池に関する基礎的研究",秋田工専研究紀要第44号, pp.70-74

12) 村山正樹, "色素増感太陽電池の光電極のための TiO₂ ペーストの調製", 三重県科学技術 振興センター工業研究部研究報告 (2005)_29_24-28.