端面画像処理による 偏波保持光ファイバの偏波軸調整法

Alignment of Polarization Maintaining Fibers By Image Processing of End Surfaces

棚森 鶴时, 成木 俊介‡, 森 正和‡ Tazuru TANAMORI, Shunsuke NARUKI, Masakazu MORI

Abstract : Methods to align polarization maintaining fibers by image processing of fiber end surfaces are investigated. A simple method, which is called 16 direction equidistance scanning, is developed, and is applied successfully to detect cladding layers and stress-applying regions in fiber end surfaces. By including fiber diameter detection algorithm, this method can be used to any sizes and any positions of fiber images.

1. はじめに

近年、光ファイバの種類は多様化してきている。マル チモードファイバ(MMF)やシングルモードファイバ (SMF)、偏波保持光ファイバ(PMF)のように実用化されて いるものから、マルチコアファイバ(MCF)のように実用 化に向けて盛んに研究が行われているものまで多種多様 であり、様々な方面での活用が期待されている。その反 面、ファイバ構造の複雑化に伴い、外形合わせだけによ る光ファイバの接続が難しくなっている。

ファイバ軸合わせの方法としては、ファイバ端面¹⁾も しくはファイバ側面²⁾から光を照射して、側面から内部 の状態を観察する手法(側面観察法)が広く用いられてい る。偏波非保持の SMF のように簡単な構造であれば側面 観察法でも十分な効果を期待できる。しかし、PMF や MCF のように複雑な構造を持つファイバになると、側面 観察法だけでは対処できなくなる場合が出てくる。

このような理由から、多様化するファイバ形状に応じ るために、側面観察法に代わる調整手法の開発が重要と なってくる。

我々はこれまでに、側面観察法に代わる手法として、 端面観察法をもとにした、端面画像処理による PMF の偏 波軸調整法の検討を行ってきた^{3,4)}。

本研究では、PANDA型偏波保持光ファイバ⁵⁾を観察対 象とすることを前提に、端面画像処理による偏波軸調整 手法の開発を目指した。

- * 愛知工業大学大学院 工学研究科(豊田市)
- : 愛知工業大学 工学部 電気学科(豊田市)

2. 基本アルゴリズム

端面画像処理により PMF の偏波軸方向を決定するためには、第一に、端面画像からコアとクラッド、応力付 与部をそれぞれ識別する必要がある。

これらの画像情報から基準偏波軸方向との角度ずれが 求められる。PANDA型ではコアとクラッド、応力付与 部はいずれも円形状であるため、端面画像から円検出を 抽出するアルゴリズムが重要となる。

2・1 エッジ検出

ファイバの端面画像処理を行う上で最も重要なことは、 ファイバ原画像からクラッドと応力付与部を正確に検出 することである。

しかし、ファイバ原画像ではクラッドや応力付与部の 色変化が少ないため、原画像のまま処理を行おうとして も、検出が非常に難しい。そこで原画像にエッジ検出処 理を行い、クラッドと応力付与部の検出を行えるように する。検出法の検討に当たっては、次のような仮定をお いた。

1. コアはクラッドの中心にある

2. 応力付与部はコアを中心に左右対称位置にある

エッジ検出フィルタにはキャニーフィルタ⁶を用いた。 図2.1(a)にエッジ検出画像を示す。原画像にエッジ検出処 理を行うと、色変化の境界面において線分が現れる。し かし、キャニーフィルタのみでは、円が不連続な線分と して検出されていることが分かる。そのため、クラッド や応力付与部に該当する円検出が難しいままである。

・化前 (b)平滑化後図 2.1 エッジ検出画像

そこで、エッジ検出画像に平滑化処理を行った。平滑 化にはガウシアンフィルタを用いた。図2.1(b)に平滑化エ ッジ検出画像を示す。平滑化を行うことにより、画像全 体の像はぼやけてしまうが、不連続な線分が減少してい ることが分かる。また、画像を見ても分かるように、原 画像に比べてクラッドと応力付与部の位置が格段に明確 になっている。このように、キャニーフィルタによるエ ッジ処理を行った後で、画像の平滑化をすることにより、 円検出を効率的に行うことが可能となる。

2·2 円検出

前節で得られたエッジ検出画像から、クラッドと応力 付与部に該当する円の検出を行う。円検出には、一定範 囲内に存在するピクセルから16方向に走査を行う「16方 向等距離走査法」を用いた。

まず始めに、画像から中心と思われる点を一つ決め、 その一点を中心とした複数方向の走査を同時に行う。あ る走査線上で白色画素を見つけた場合、円の一部である 可能性がある。そこで、他の走査線上でも同時に白色画 素を検出したかどうかを判定する。同時に検出されてい なければ、中心点を移動させて同様の処理を行う。全て の走査線上で同時に白色画素が現れた場合、円であると 判定し、中心となった座標を取得しておく。用いる画像 によっては16点すべてが白色画素に当たるとは限らない 場合があるため、2点までの画素不足は誤差として許容す ることとした。閾値を設定して白色画素の判定を行うこ とにより、エッジの不明瞭さに対応できるようにした。

図2.2に円検出結果を示す。図2.2(a)は円検出に用いたエ ッジ画像、図2.2(b)は検出位置を表した画像である。図 2.2(a)では、右側の応力付与部に線分の欠けがある。しか し、画素不足を許容することにより円であると認識され ていることが分かる。

(a)エッジ画像

0

「像 (b)検出位置画像
図 2.2 円検出画像

また、誤差許容数と誤検出の割合はトレードオフの関係であるが、誤差許容数を全走査線数の2割程度とすれば 大きな誤差もなく検出できることが分かった。

2·3 角度測定

基準画像と検査対象画像という二枚の画像を用いて両 者の角度差の測定を行った。始めに端面基準画像を読み 込み、エッジ検出と円検出の処理を行い、クラッドと応 力付与部の中心座標の値を得ておく。次に検査対象画像 を同様の手順で処理を行う。これより、二枚の画像から 4 つの中心座標値が得られる。

まず、2 つのクラッド中心座標を平行移動により重ね 合わせる。次に、基準画像と検査対象画像のそれぞれの 応力付与部の中心座標から角度測定を行う。

基準画像に図 2.3(a)、検査対象画像に図 2.3(b)を用いた 場合について角度測定を行った。基準及び検査対象画像 の角度差は 29.29°となった。本手法による角度測定は検 出されたクラッド及び応力付与部の中心座標に依存する が、概ね良好な結果を得ることができた。

図 2.3 角度測定画像

3. アルゴリズムの改良

前章では、角度測定の基本的なアルゴリズムを説明した。この基本アルゴリズムを用いることにより、角度検 出を行えることを確認できたが、円検出の処理速度が遅 いこと、および画像拡大率を変えたことによって端面画 像のピクセル数が変化すると計測できないという問題が あることが分かった。そこで、円検出速度向上とファイ バ端面画像の自動検出を目的としてアルゴリズムの改良 を行った。

3・1 円検出速度の改良

2.2節で説明した16方向等距離走査法は、ファイバの中 心であると思われる点を一つ決め、16方向に等距離で走 査を行っていく方法である。この手法では円検出を行う 際に、2点までの誤差を許容すれば十分な効果を得られる ことが分かった。しかし、中心点と走査線の移動範囲が 画像全体となっていたために、円検出の処理時間が長く なるという問題があった。

そこで、次のような仮定をおいて、円検出処理の走査 範囲の限定を行った。 1.ファイバは画像領域の中央付近にある

2.ファイバの形状は真円である

これより、ファイバを中心とした正方形領域にまで、 中心点の移動範囲を限定することが可能である。

因 5.1.1 干心 标场 範囲の 取足(その 1)

次に、走査範囲の始点及び終点の限定を行った。画像 全体に占めるファイバ画像の割合からファイバ半径をあ らかじめ見積もっておく。始点と終点はファイバ半径±5 ピクセルとした。これにより、始点から終点までの走査 を短時間で終えるこ

とができる。基準と 検査対象に同一の画 像を用いて、アルゴ リズムによる検出時 間の違いを比較した。 2.2節で説明した円 検出に関する時間は、 改善前が1.53秒であ ったのに対し、改善 後では0.40秒であっ た。

図 3.1.2 走査始点・終点の限定

3・2 ファイバ端面画像の自動検出

ファイバの直径を固定にしたままでは、カメラや望遠 レンズの倍率が変わるたびに、アルゴリズム中のファイ バ直径に関するパラメータを修正しなければならない。 そこで汎用性向上のために、自動直径検出アルゴリズム を検討した。自動直径検出には垂直及び水平走査で各2 本ずつ、計4本の走査線を用いる。

図3.2.1に水平走査の 方法を示す。各走査線を 画像端から中央まで順 次移動させ、閾値以上の 点を見つけた時、クラッ ド円を見つけたと判定 する。この時の判定条件 に合った点の座標を取 得し、該当する走査線の 走査を終了する。水平方

向と垂直方向の走査が終了したら、得られた座標をもと に、円の直径を求める。今回は垂直および水平走査より 求めたファイバ直径の平均をとり、ファイバ直径として 用いることにした。

ここで、前節で導入した走査始点及び終点の位置の再 検討を行う。走査始点及び終点の走査範囲を±αとして 表すことにする。前節ではαを5ピクセルとしたが、画像 全体におけるファイバ画像の占める割合の変化に対応す るため、自動直径検出を用いる場合は、αを半径の1/5と した。つまり、走査により求めたファイバ直径の1/10が αに該当することになる。これにより、走査始点及び終 点の自動調整も可能となる。

また、垂直・水平走査から得られた座標から円の中心 点を推測することができる。前節では、中心点の移動範 囲をファイバの大きさに等しい正方形領域にして中心点 の移動範囲を限定した。ここでは垂直・水平走査により 得られた座標を用いて中心点の推測を行うことにより、 走査範囲を限定する。

まず始めに、各座標値をx軸、y軸成分に分け、平均値 を求める。ここで求めたx軸、y軸成分の平均値を円の中 心とする。この座標を中心として、一辺が半径の1/2に等 しい正方形領域にまで走査中心点の移動範囲を限定する。

自動直径検出及び中心座標の推測を行うことにより、 検出速度を0.20秒にまで改善することができた。速度改 善の手法としては前節の半分程度でしかないが、2章で述

べたアルゴリ ズムに比べれ ば格段に改善 されている。ま た、ファイバの 直性を考えれ ば十分有効な 手法である。

4. 角度検出の分解能

前節でファイバの自動検出処理が可能であることを検 証することができた。ここでは、ファイバを構成するピ クセル数の変化が、どの程度、角度検出に影響を与える かを調べる。

検査対象画像には基準画像を 30°回転して用い、ピク セル数の変化による検出誤差を調べた。

ピクセル数が多くなると、1 ピクセル当たりの分解能 も高くなり、細かな色変化を持つ。これにより、ファイ バの色変化も細かくなり、忠実に再現することが可能と なるが、エッジ検出で問題が出てくる。今回用いたキャ ニーフィルタのアルゴリズムでは、隣接ピクセル間の輝 度差が一定の閾値に入った場合、エッジであると判定す る。光ファイバ端面の画像を用いる場合、閾値の設定が 非常に難しく、画像ピクセル数によっては、うまくエッ ジ検出ができなくなってしまうか、円ではない場所でエ ッジを検出してしまう。そこで、画像を構成するピクセ ルを間引くことで、エッジ不検出とノイズの問題に対処 した。

図 4.1 に間引き基準画像より生成したエッジ画像の例 を示す。間引き後のピクセル数は(a)が 648×648(420k ピ クセル)、(b)が 400×400(160k ピクセル)である。図 4.1(a) 及び(b)を見比べても分かるように、画像を構成するピク セル数が多いほど忠実に線分を再現できる。

(a) 420k Pixel

(b) 160k Pixel

図 4.1 間引きエッジ検出画像

図 4.2 に間引いた画像による角度検出誤差と画像ピク セル数の関係を示す。画像ピクセル数による検出誤差の 変化を見るため、160k から 420k ピクセルまでの 4 枚の 画像を比較のために用いた。画像構成ピクセル数の増加 と共に、検出誤差が減少しているのが分かる。

本研究では、前章までに述べた手法で 30[dB]以上の偏 波消光比を得ることを目指している。図 4.2 の結果から、 420k ピクセル画像での、検出誤差は 1°以下となってい る。検出誤差 1°であれば、偏波消光比 35[dB]を確保で きる。

以上の結果から、一定の検出精度を得るためには、求める 精度に応じたピクセル数が必要であることが分かる。

5. まとめ

画像処理を用いた、ファイバの端面観察法による偏波 保持光ファイバの偏波軸調整の手法を検討した。静止画 像から必要とする情報を取り出すことが重要な課題の一 つであった。今回検討した手法は、比較的簡単なアルゴ リズムでありながら、円検出を行う上で問題のない検出 率を得ることができた。16方向等距離走査法による円検 出は、アルゴリズムの改良を行うことで実用上問題のな い速度と精度を出せることが分かった。また、ファイバ 直径の自動検出を実装することにより、画像におけるフ ァイバの大きさや、位置に関係なく検出を行うことがで きた。

今回は静止画を用いた手法の考案を行ったが、今後は 動画像への適用とリアルタイム処理を目的として、改良 と検討を行っていく予定である。

6. 参考文献

1) 松本三千人,灰原正,宮内充,「光ファイバ融着補強部信 頼性の検討」,電子通信学会論文誌,Vol.J66-B,No.5, pp.615-622(1983)

2)河田修,星野光一,宮島義昭,大西正敏,石原浩志,「コア直 視法を用いた単一モードファイバ接続の軸調心誤差要因 と接続損失推定」,電子通信学会論文誌,Vol.J67-B,No.3, pp.281-288(1984)

3) 棚森鶴,成木俊介,森正和,「端面画像処理による偏波保 持光ファイバの偏波軸調整法の検討」,電気関係学会東海 支部連合大会,E4-6(2011).

4) 棚森鶴,成木俊介,森正和,「端面画像処理による偏波 保持光ファイバの偏波軸調整法の改良」,第11回レーザ 一学会中部支部若手研究発表会,5(2011)

5) 保坂敏人, 佐々木豊, 岡本勝就, 野田寿一, 「応力付与形 偏波保持光ファイバー構造設計および作成-」, 電子通信学 会論文誌, Vol. J67-C, No. 10, pp. 741-748 (1984)

6) J. Canny," A Computational Approach to Edge Detection", *IEEE Trans. Pattern Analysis and Machine Intelligence*,

Vol.PAMI-8, No.6, pp.679-698(1986)

(受理 平成 24 年 3 月 19 日)