低温堆積 AlN, GaN バッファ層/サファイア基板上 に作製した

MOCVD n-GaN の深い準位の比較

Comparision of deep levels in n-GaN grown by MOCVD on Sapphires with LT-AlN and GaN buffer layers

柴田 龍成⁺,本田 銀熙⁺⁺,徳田 豊⁺⁺ Tatsunari SHIBATA, Unhi HONDA, Yutaka TOKUDA

Abstract: We investigated the variations of trap concentrations in n-GaN films by changing buffer layer type (LT-AlN and GaN) and GaN film thickness.

Two electron traps labeled E1 (E_c -0.24eV) and E3 (E_c -0.59eV) are observed in all samples by DLTS spectra. The E1 trap shows the logarithmic capture kinetics, which suggests dislocation-related defects. Trap concentration of this trap is lower in the thick GaN film. In addition, the E1 trap concentration in n-GaN film grown on LT-GaN decrease largely as compared to those on LT-AlN buffer layers. On the other hand, no variation in the E2 trap concentration is observed. This result indicates that the E2 trap corresponds to native point defects.

Three hole traps labeled H1 (E_v +0.88eV), H1' (E_v + ~0.4eV) and H2 (E_v +0.26eV) are found by MCTS spectra. The H1 trap is attributed to the C or V_{Ga}. Moreover, this trap is the most dominant and shows no variation in all samples. In case of an additional trap H1', the trap concentration has Gaussian distribution of energy levels. This trap obtained in n-GaN on n⁺-GaN is lower than n-GaN films on Sapphire substrates.

1. はじめに

現代の情報化社会の構築には、シリコン半導体を主体 とした集積回路や、様々な電子デバイスの半導体技術を 中心としたエレクトロニクスの発展が大きな推進力とな ってきた。このような社会の発展に伴い、化石燃料の大 量消費や環境汚染が深刻な問題となり、情報通信の高速 化および大容量化と環境保全の両立が要求されている。

このような中で、Ⅲ族窒化物半導体(GaN)はその優れ た物性的特徴から、通信の高速大容量化と省エネルギー の面で期待が大きい材料である。

一方で、大面積の GaN 基板が希少、高価であるため、 GaN 成長には異なる材料上への成長が行われている。そ のため、作製した GaN には結晶欠陥が生じやすい問題が ある。現在、サファイアなどの異種基板上に GaN を成

Ť	愛知工業大学大学院 工学研究科
	電気電子工学専攻(豊田市)
+ +	<i>巫阳王光十兴 垂白兴幻 (曲田子</i>

†† 愛知工業大学 電気学科 (豊田市)

長させる際に AIN または GaN 低温堆積緩衝層(バッファ 層)の導入により良好な結晶性を有する GaN 形成を実現 しているが、それでもなお 10⁸~10¹⁰cm⁻² 程度の貫通転位 が存在する。これまでに多くの研究グループが TEM 観 察によりバッファ層の膜厚¹⁾や成長速度^{2,3)}と転位密度と の関連性について報告している。

貫通転位は一般的にキャリア散乱及び漏れ電流を引き 起こす原因として知られており、結晶転位の低減は高性 能かつ高機能 GaN 系デバイスの実現に必要不可欠であ る。低転位密度の GaN 結晶を実現するためには、低温バ ッファ層の種類及び GaN エピ層の膜厚といった成長条 件の選定が非常に重要である。本研究では、高品質の GaN 結晶に最適な成長条件を提案することを目的とし、 バッファ層の種類や膜厚の成長条件を変化させ、結晶欠 陥に与える影響について検討した。

2. 試料及び実験方法

本研究で用いた試料は、サファイア基板上に MOCVD

法で成長させた Si ドープの n-GaN ショットキーダイオ ードである。バッファ層の種類や n-GaN エピ層の膜厚に よる結晶性への影響を検討するため、3 種類の試料を用 意した。表 1 に各試料におけるバッファ層と n-GaN エ ピ層の膜厚及び、キャリア濃度をまとめた。GaN エピ層 の膜厚による影響を Sapphire 1 と Sapphire 2 で比較した。 また、バッファ層の種類による違いは Sapphire 2 と Sapphire 3 を用いて比較を行った。これらの試料に、 Ti/Al/Ni/Au のオーミック電極と、Pt/Au のショットキー 電極を GaN 表面に EB 法で形成し、プレーナ型のショッ トキーダイオードを作製した。

更に、貫通転位との関連性を検討するため、n⁺-GaN 自 立基板上に成長させた n-GaN(GaN on GaN)についても評 価を行った。n-GaN エピ層は n⁺-GaN 基板上に直接成長 し、膜厚 1.2 μ m、キャリア濃度 6×10¹⁶ cm⁻³ である。オー ミック電極は GaN 基板に Ti/Al/Ni/Au を、ショットキー 電極は GaN 表面に Pt/Au を EB 法で蒸着し、縦型のショ ットキーダイオードを作製した。

これらの試料を用いて、Deep Level Transient Spectroscopy (DLTS)法により電子トラップと、Minority Carrier Transient Spectroscopy (MCTS)法により正孔トラ ップ準位の密度を評価した。

3. DLTS 測定結果

3 · 1 DLTS 測定

DLTS 測定結果を図1に示す。測定に用いたバイアス 条件は、捕獲バイアス0V、放出バイアス-2V、捕獲パル ス10msである。測定領域はGaNエピ層表面から約35 ~135nmであり、測定温度は85から400Kまで変化させ た。時定数τ_{max}=191msでのDLTS測定結果により、各試 料で136K、180K、290Kにピークを観測した。観測され た電子トラップを低温側からE1~E3とした。また、GaN on GaN 試料において350K付近にブロードなピークを観 測した。このトラップをE4とした。サファイア基板上 の試料におけるトラップ E4は、310Kから高温にかけて のブロードなピークとなっており、GaN 基板上の試料と 比べてより高温側に存在することが予想された。

図 2 に DLTS 測定から得られたアレニウスプロットを 示す。このプロットからエネルギー準位を求めた結果、 E1、E2、E3 はそれぞれ、E_c-0.24eV、E_c-0.32V、E_c-0.59eV と得られた。これらのピークは、様々な成長法で作製さ れた GaN 結晶でよく見られるトラップであり⁴⁻¹⁰⁾、特に トラップ E3 は、現在報告されている N_{Ga}の活性化エネ ルギー¹⁰⁾とほぼ一致することが分かった。

次に、各試料で複数の素子を測定し、トラップ濃度を 算出した。トラップ E1 と E3 の計算結果を、それぞれ図 3(a)と(b)に示す。トラップ E1 について、エピ層が最も厚 い Sapphire 2 では、Sapphire 1 よりもトラップ濃度が低い 傾向を示した。これは、GaN エピ層の膜厚を厚くするこ

表1 測定試料

	Sapphire 1	Sapphire 2	Sample 3	
バッファ屋	LT-AlN buffer	LT-AlN buffer	LT-GaN buffer	
	~20nm	~20nm	~40nm	
GaN エピ層厚さ	3µm	5µm	2µm	
キャリア濃度	$6 \times 10^{16} \text{ cm}^{-3}$	$6 \times 10^{16} \mathrm{cm}^{-3}$	$6 \times 10^{16} \mathrm{cm}^{-3}$	

とで、表面近傍での結晶欠陥が大きく低減されることを 示唆する。

また、LT-GaN バッファ層を用いた Sapphire 3 では、 LT-AIN バッファ層を有する Sapphire 1 と 2 よりもトラッ プ濃度が低い。このことから、LT-GaN をバッファ層と して導入することで、LT-AIN バッファ層を使用した場合 よりも GaN 結晶品質が改善されることが推測できる。

GaN on GaN では、サファイア基板上の3つの試料より もトラップ濃度が低い。GaN 基板上に成長させた GaN エピ層がサファイアよりも低転位密度であることから、 トラップ E1 は貫通転位に関連していることが示唆され た。

トラップ E3 については、各試料における面内分布が大 きく、一桁以上の大きな差が見られた。更に、GaN エピ 層の膜厚及び、バッファ層と成長用基板の種類に対する 依存性は見られなかった。分散の大きいトラップ E3 に ついて、試料面内でのトラップ濃度分布を観測した。図 4 にトラップ E3 の、Sapphire1、2 における試料内トラッ プ濃度分布を示す。測定した試料のサイズは、2 インチ ウェハーの 1/6 である。トラップ濃度に合わせて対数尺

(0) sappnine 2 図4 トラップ濃度面内分布

度で等間隔となるように分割し、色で示した。この図に 示すように、サファイア基板の中心部でトラップ濃度が 低く、外縁ではトラップ濃度が高くなる傾向が見られた。 その原因についてはまだ不明であるが、高速回転縦型炉 を用いて結晶成長を行ったため、気相中での反応の速度 とガス流れの速度の関係によりエピ層の膜質が大きく変 化したことに起因していると考えられる。今後より詳細 に検討するにはウェハー全体の面内分布を評価する必要 がある。

3・2 DLTS パルス幅依存

観測した欠陥が、不純物や空孔による点欠陥であるか、 転位による線欠陥であるかを判別するために、DLTSの 捕獲パルス幅依存性について検討した。

図5にエネルギーバンド中の点欠陥と転位関連トラッ プの電子捕獲モデルを示す⁽¹¹。点欠陥の場合、トラップ による電子捕獲の速度方程式は次のように示される。

$$\frac{\mathrm{d}\mathbf{n}_{t}(\mathbf{t}_{p})}{\mathrm{d}\mathbf{t}_{n}} = \mathsf{C}_{n}\mathbf{n}(\mathsf{N}_{t} - \mathsf{n}_{t}) \tag{1}$$

ここで、 n_t は電子を捕獲しているトラップの濃度、 C_n は 電子の捕獲係数、nは電子の濃度、 N_t はトラップの濃度、

図5 電子捕獲モデル

N_t-n_t は電子を捕獲していないトラップの濃度である。 転位の場合はトラップが電子を捕獲した際の荷電により 生じる電界ポテンシャルのため次のような速度方程式に なる。

$$\frac{dn_t(t_p)}{dt_p} = C_n n(N_t - n_t) \exp\left[-\frac{q\phi(t_p)}{kT}\right]$$
(2)

また電界ポテンシャルは

$$\phi(t_p) = \phi_0 \frac{n_t(t_p)}{n_{t_0}} \tag{3}$$

と表され、パルス幅で変化する。Wosińskiの式より¹¹⁾

$$n_t(t_p) = C_n \tau n N_t \ln \frac{t_p + \tau}{\tau}$$
(4)

$$\frac{1}{\tau} = \frac{q\phi_0}{n_{t0}kT} C_n n \tag{5}$$

と表すことができる。ここで t_p≫τのとき

$$n_t(t_p) = n_{t0} \frac{kT}{q\phi_0} \left(\ln t_p - \ln \tau \right)$$
(6)

となり DLTS のピークの高さが対数的なパルス幅に対し て直線となり、傾きは転位密度 n_{t0} を反映している。これ により DLTS 測定における電子捕獲パルス幅を変化させ、 捕獲過程を評価することで転位関連の欠陥が判別できる。 また、パルス幅依存性を測定するにおいて考慮しなけれ ばならないのが λ 領域の影響である。λ 領域とは、空乏 層内でイオン化していないトラップが存在する領域であ る。エネルギーバンド中のλ領域の様子を図6に示す。 またλ領域の幅は次のように表される。

$$\lambda = X_r - X_f = \sqrt{\frac{2\epsilon(E_f - E_t)}{q^2 N_d}}$$
 (7)

ここで、 x_r は逆バイアス下での空乏層幅、 x_f はトラップ とフェルミ準位との交点までの幅、 E_f 、 E_t はそれぞれフ ェルミ準位とトラップ準位である。この範囲での $\Delta C/C$ は Stivenard らの式より¹²

$$\frac{\Delta C}{C} = B\left\{ \left(W_0 - \lambda_0(t_p) \right)^2 - \left[W_1 - L_1(t_p) \right]^2 \right\}$$
(8)

と表せ、 W_o は逆バイアスの空乏層幅で λ_0 はその時の λ 領域、 t_p はパルス幅を示す。また B、 L_1 はそれぞれ次の ように表される。

$$B = \frac{1}{2} \frac{N_t}{N_d W_0^2} (f_0 - f_1)$$
(9)

$$L_{1}^{2}(t_{p}) = 2 L_{D}^{2} \ln \left[\frac{t_{p}}{t_{c} \ln(2-K)}\right]$$
(10)

$$t_{c} = (C_{n}N_{d})^{-1}$$
(11)

$$\mathbf{K} = \exp(-\mathbf{e}_{\mathbf{n}}\mathbf{t}_{\mathbf{f}}) \tag{12}$$

ここで、 N_t はトラップ濃度、 f_o と f_1 はそれぞれ V_0 、 V_1

図6電子捕獲、放出時のエネルギーバンドの変化

図7 λ領域を除いたパルス幅依存測定

が印加されたときのフェルミ分布関数、 L_D はデバイ長、 e_n は電子の放出割合、 t_f はバイアスパルスの繰り返し周 期である。式(10)より、容量過渡応答の大きさはパルス 幅 t_p に依存するため、 λ 領域を除いたパルス幅依存を測 定する必要がある。

パルス幅依存性において λ 領域の影響を除くために本 研究で行った方法は V_p を一定で、2 種類の V_r の一定温 度 DLTS 測定信号を引き算し、中性領域のみの電子捕獲 の様子を観測するというものである。バイアス条件に対 する 2 つの空乏層の状態と引き算された領域について図 7 に示す。

トラップ E1、E3 における、λ領域を考慮したパルス 幅依存測定結果を図8に示す。横軸をパルス幅、縦軸を 捕獲された電子濃度とした。測定温度はすべての試料で、 トラップ E1 が 150K、トラップ E3 が 300K で行った。

トラップ E1 に捕獲された電子濃度は、パルス幅に対 して線形的な増加依存性があることが分かる。この結果 から、トラップ E1 は線欠陥であることが考えられる。 更に、Cho らにより Ec-0.24eV のトラップは貫通転位と 相関があると報告され、トラップ E1 は転位関連欠陥で あることが確認できた ^{10,13)}。線形依存の傾きの違いは、 式(4)からトラップ濃度 N_tの違いによるものである。従っ て、E1 が最も大きい Sapphire 1 の傾きが最も大きく、 Sapphire 2、3 の順で傾きが小さくなる。

トラップ E3 については、パルス幅の変化に対して捕獲 された電子濃度は一定であることが分かった。このこと から、トラップ E3 は点欠陥であると判別された。

3・3 トラップ濃度深さ分布

各試料において、エピ層の深さに対するトラップ濃度 分布を測定した。図9にトラップE1とトラップE3の深 さ分布を示す。横軸をエピ層表面からの深さとし、縦軸 をトラップ濃度とした。測定に使用したパルス幅は、ト ラップE1とE3で、それぞれ100ms、10msとした。Sapphire 3については、高い逆バイアスにおいてリーク電流が増 加し、微小容量変化の測定が困難であったため測定領域 を 300nm までとした。

トラップ El について、バッファ層に近い GaN 膜内で トラップ濃度が大きく増加している。これは、Fang らに よって報告された、GaN エピ層の膜厚を薄くすることで、 トラップ濃度が減少する傾向と一致していることが分か った。⁷⁾ このことから、バッファ層上の GaN エピ層厚膜 化により結晶転位が低減できると考えられる。

トラップ E3 の場合、サファイア基板上の GaN は深さに 対する分布は殆ど無く、一定であった。このような傾向 は、Fang らの報告とよく一致する⁹⁾。

4. MCTS 測定結果

4 · 1 MCTS 測定とは

pn 接合ダイオードを用いて DLTS 測定を行う場合は、 捕獲時のバイアスを順バイアスまで印加することで、電 子と正孔トラップを同時に評価することができる。しか しながら、n型半導体を有するショットキーダイオード においては、順方向電流におけるキャリアの移動は電子 のみであるため、電圧パルスでは少数キャリアである正 孔トラップの評価はできない。そこで、禁制帯以上のエ ネルギーをもつ光を照射することで、中性領域で電子-正孔対を形成し、空乏層内のトラップによる正孔捕獲過 程を決める。

4 · 2 MCTS 測定結果

図 10 に Sapphire 1、2、3 の MCTS 測定結果を示す。 光源は波長 355nm の紫外線 LED(UV-LED:3.49eV)を使用 し、サファイア基板側から照射した。サファイアと AIN のバンドギャップは約 6.3eV と紫外光よりも大きいため、 GaN エピ層で電子-正孔対が形成されていると考えられ る。光照射時間は 3s、試料の逆バイアスは-2V、測定時 定数は 1.91s とした。この測定から、各試料で 325K、117K に正孔トラップを観測した。それぞれ H1、H2 とした。

各トラップのアレニウスプロットを図 11 に示す。アレ ニウスプロットから、H1 のエネルギー準位は E_v +0.88eV、 H2 は E_v +0.26eV であることを確認した。H1 は Armstrong らや Hierro らが報告している、Ga 空孔複合体または炭 素関連欠陥の活性化エネルギーと一致する¹⁴⁻¹⁶。

4・3 一定温度 MCTS 測定結果

図10のMCTS測定における最も信号強度の大きいトラ ップ H1 について詳細に検討するため、一定温度による MCTS 測定を行った。図11に Sapphire 2による280K 一 定温度 MCTS 測定結果を示す。試料の逆バイアスを0か ら-10V まで変化し、3 つの深さ領域になるよう測定を行 った。図10の一定温度 MCTS 信号はトラップ濃度に換 算している。時定数35秒に H1及び、H1よりも短い時 定数である約7秒にブロードなピークを観測した。この ブロードなピークを H1'とした。特に、H1'は深い領域を 測定することでより顕著に現れることから、GaN エピ層 表面からバッファ層にかけてトラップ濃度が増加してい ると考えられる。

4・4 フィッティングによる信号分離

H1 と H1'のトラップ濃度を算出するため、一定温度 MCTS 信号に対してフィッティングを行った。Sapphire 1 と GaN on GaN の 270K 一定温度 MCTS 測定結果を図 12(a)内の実線で示す。試料の逆バイアスは、両試料とも に-10V である。Sapphire 1 では、時定数 920 秒に H1、約 10 秒に H1'が見られた。GaN on GaN では、H1'のピーク は観測されず、H1 のピークのみ観測された。

これらの信号におけるフィッティング結果を、図 12(a)

図 11 280K 一定温度 MCTS 測定結果

内の破線で示す。H1のフィッティングについては、GaN on GaNの時定数を用いて、単一のエネルギー準位をもつ ものとして仮定し行った。H1'については、ブロードで あるため、トラップ濃度がエネルギー準位に対してガウ ス分布していると仮定した上でフィッティングを行った。 図 12(b)にH1'のエネルギー準位に対するガウス分布関数 を示す。このガウス分布関数は次式で表される。

$$Nt(E) = \frac{Nt_{max}}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(E-E_{max})^2}{2\sigma^2}\right\}$$
(12)

 E_{max} は中心エネルギー準位、 σ^2 は分散、Nt_{max}は中心エネ ルギー準位でのトラップ濃度である。図 12(a)の Sapphire1 に対するフィッティングから、 E_{max} =0.376eV、 σ^2 =0.0025 (σ =0.05)、Nt_{max}=8.68x10¹⁵cm⁻³が求められた。しかし、中 心エネルギー準位は、測定した素子や試料間でバラツキ があり、0.35~0.40eV の幅をもつことが分かった。

図13に各試料におけるH1、H1'のトラップ濃度を示す。 測定領域はエピ層表面から約400nmである。正孔トラッ プH1の場合、GaNエピ層の膜厚、バッファ層及び成長 用基板の種類に対して依存性は見られなかった。また、

トラップ濃度は 1x10¹⁶cm³ 程度であることから、n-GaN における最も支配的なトラップであることが示唆された。 更に、ブロードなピークである H1'については、Nt_{max}を トラップ濃度としてプロットした。その結果、GaN on GaN はサファイア基板上の GaN よりもトラップ濃度が 1 桁以上低くなることが分かった。GaN on GaN の転位密 度はサファイア基板上の GaN と比べて大幅に低減され ることから、H1'が転位に関連した欠陥であることが推 測される。

6. まとめ

本研究では、サファイア基板上に成長させた n-GaN エ ピ層における結晶欠陥の評価を行い、バッファ層の種類 や GaN 膜厚の変化による結晶性への影響について検討 を行った。また、GaN 基板上の低転位密度 GaN と比較 し、転位の違いについて評価した。

DLTS測定によりn-GaNの典型的な電子トラップである、 E1(Ec-0.24eV)、E2(Ec-0.32eV)、E3(Ec-0.59eV)を観測した。

トラップE1については、パルス幅の対数に依存性があ

ることから、転位関連欠陥であることが分かった。GaN エピ層表面からサファイア基板へ向けてトラップ濃度が 上昇し、n-GaNエピ層の膜厚を厚くすることで、表面近 傍でのトラップ濃度が減少することを確認した。また、 LT-GaNバッファ層を導入したGaNエピ層の方が、LT-AIN バッファ層よりもトラップ濃度が減少し、GaN基板上の GaNでは最もトラップ濃度が低いことが明らかとなった。

トラップE3はパルス幅依存の測定から、点欠陥である ことを見出した。トラップ濃度はエピ層の深さに対して 一定であり、GaNエピ層の膜厚やバッファ層の種類に依 存しないことが分かった。また、試料面内でトラップ濃 度は均一ではなく、分布を示すことから、気相中の反応 速度と原料ガスの流れの関係による膜質の変化が起因し ていると考えられる。

MCTS 測定により正孔トラップ H1(Ev+0.88eV)、 H1'(Ev+~0.4eV)、H2(Ev+0.26eV)を観測した。

トラップH1のエネルギー準位は、現在報告されている、 炭素またはV_{Ga}関連欠陥の活性化エネルギーと一致する。 トラップ濃度は高く、n-GaNにおける最も支配的なトラ ップであることが確認できた。

トラップH1'はブロードなピークであり、フィッティン グの結果により、エネルギー準位に対して正規分布して いることが分かった。印加バイアスにおける依存性を示 し、サファイア基板に近いGaNエピ層でトラップ濃度が 高くなる傾向が見られたため、転位関連欠陥であること が推測された。

今後の課題としては、バッファ層の膜厚や成長温度の 変化による結晶品質の改善効果を明らかにし、最適な成 長条件について検討する予定である。

謝辞

本研究遂行のため、試料を提供して頂くとともに有益 な御討論を頂いた豊田中央研究所 加地徹氏、上杉勉氏、 上田博之氏、成田哲生氏に深謝の意を表する。

参考文献

- ¹⁾J.C. Zhanga, D.G. Zhao, J.F. Wang, b, Y.T. Wang, J. Chen, J.P. Liu, H. Yang, J. Cryst. Growth. **268**, 24-29 (2004)
- ²⁾H.K. Cho, K.S. Kim, C.-H. Hong, H.J. Lee, J. Cryst. Growth. **223**, 38-42 (2001)
- ³⁾Ki Soo Kim, Chang Seok Oh, Kang Jea Lee, Gye Mo Yang, Chang-Hee Hong, Kee Young Lim, Hyung Jae Lee, and Akihiko Yoshikawa, J. Appl. Phys. **85**, 8441(1999)

- ⁴⁾Z. -Q. Fang, J. W. Hemsky, and D. C. Look, M. P. Mack, Appl. Phys. Lett. **72**, 448(1998)
- ⁵⁾Z. –Q. Fang, D. C. LooK, W. Kim, A. Fan, A.Botchkarev, H.Morkoc, Appl. Phys. Lett. **72**, 2277(1998)
- ⁶⁾L. Polenta, Z-Q. Fang, and D. C. LooK, Appl. Phys. Lett. 76, 2086 (2000)
- ⁷⁾Z.-Q. Fang, D. C. Look, J. Jasinski, M. Benamara, Z. Liliental-Weber, and R. J. Molnar, Appl. Phys. Lett. **78**, 332 (2001)
- ⁸⁾Z.-Q. Fang, D. C. Look, P. Visconti, D.-F. Wang, C.-Z. Lu, F. Yun, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. **78**, 2178 (2001)
- ⁹⁾Z. -Q. Fang, D. C. Look, X. -L. Wang, Jung Han, F. A. Khan, I. Adesida, Appl. Phys. Lett. **82**, 1562 (2003)
- ¹⁰H. K. Cho, C. S. Kim, and C.-H. Hong, J. Appl. Phys. **94**, 1485 (2003)

- ¹¹⁾T. Wosiński, J. Appl. Phys. **65**, 1566 (1988)
- ¹²⁾D. Stievenard, J. C. Bourgoin and M. Lannoo, J. Appl. Phys.
 55, 1477 (1984)
- ¹³H. K. Cho, K.S. Kim and C. -H. Hong, J. Cryst. Grow. 223, 38-42 (2001)
- ¹⁴⁾A. Armstrong, A. R. Arehart, D. Green, U. K. Mishra, J. S. Speck and S. A. Ringel, J. Appl. Phys. **98**, 053704 (2005)
- ¹⁵⁾E. Calleja, E. Calleja, F. J. Sánchez, D. Basak, M. A. Sánchez-García, E. Muñoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sánchez-Rojas, B. Beaumont, P. Lorenzini and P. Gibart, Phys. Rev. B **55**, 4689 (1997)
- ¹⁶⁾A. Hierro, D. Kwon, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. **76**, 3064 (2000).

(受理 平成 24 年 3 月 19 日)