液体中に YAG レーザで生成されたプラズマの物性に関する研究

Physical properties of laser-produced plasma in liquid

山口剛* ,津田紀生** ,山田諄**

Tsuyoshi Yamaguchi, Norio Tsuda, Jun Yamada

Abstract The plasma produced by focusing YAG laser beam in liquid is studied. Little is known about laser-produced plasma in liquid. Thus, the purpose of this study is to elucidate the physical properties of liquid plasma. The ultra pure water melted NaCl up until 24 % is used as a test liquid. This article describes about electron density and electron temperature of the laser produced liquid plasma. Dense plasma with the electron density of the order of 10²⁵ m⁻³ is obtained by Mach-Zender interferometer. The electron density is highest at the focal spot, and decreases away from it. The several spectral lines are obtained by observing spectroscopically plasma luminescence ranging from 240 nm to 850 nm in step of 0.1 nm. The electron temperature is calculated from line intensity ratio of Oxygen atom. The electron temperature is obtained to be the order of 10⁴ K. One of application of this study is to improve the quality of water by resolving environmental materials.

<u>1. はじめに</u>

現在までに、固体表面や気体中に生成されたレーザプ ラズマの研究は多数行われており、幅広く産業応用に用 いられている。しかし、液体中に生成されたレーザプラ ズマに関する研究はほとんど行われておらず、その物性 は未知な部分が多い。そのため、本研究では液体レーザ プラズマの物性の解明を主な目的としている。本研究の 応用として、液体中に生成されたプラズマは液体中の汚 染物質除去への利用が期待されている。レーザを用いる ことによって液体中に高密度かつ高温度のプラズマを容 易に生成することができ、そして、電子温度が数万度と 高温であることから汚染物質の分解効率が良いと考えら れる。

本論文では、プラズマの基礎的な物理量である電子密 度と電子温度について求めた。電子密度はマッハツエン

- * 愛知工業大学大学院 工学研究科 電気電子工学専攻(豊田市)
- ** 愛知工業大学 工学部 電気学科 電子工学専攻(豊田市)

ダー干渉計を用いて二つの光路の位相差から求めた。電 子温度はプラズマからの発光スペクトルを解析し、同定 されたスペクトルラインから線スペクトル強度比を用い て求めた。

<u>2. 実験装置</u>

プラズマは、YAG レーザの基本波である 1064nm を焦 点距離 60mm の集光レンズを用いることによって液体中 に生成した。また、波長依存性を測定するために第 2 高 調波である 532nm もまた用いている。本研究では LOTISTH 社製 LS-2135 の YAG レーザを用いている。こ こで、各波長における YAG レーザの特性を表 1 に示す。

表 1. YAG レーザの特性

Wavelength [nm]	Max power [mJ]	Beam size [mm]	Spot diameter [μ m]
1064	350	3.7×5.2	120.0
532	180	6.1×5.6	80.0

容器は内寸 75×45×70mm³のアクリル製のものを使用 し、入射用と観測用として石英ガラス製の窓を3ヶ所取 り付けている。溶液は、溶媒に超純水・溶質に NaCl を 用いて24%まで混ぜることによって濃度依存性について 検討している。NaClは不純物の代用として用いている。

3. プラズマ生成メカニズム^{1)、2)}

3.1 電離過程

レーザによるプラズマ生成の場合、電離が始まる焦点 近傍の面積が 10⁻⁶cm⁻³ と小さいので、その起因となる初 期電子が存在しない。また、一般にレーザ光の光子 1 個 が持つエネルギーは照射される原子の電離電圧よりもは るかに小さいため、それだけで直接電離を引き起こすこ とは出来ない。ここで、表 2 には各発振波長の光子エネ ルギーを、表 3 には各原子の電離電圧と電離に必要な光 子数を示す。

表 2. 各発振波長の光子エネルギー

Wavelength [nm]	Photon energy [eV]
1064	1.164
532	2.330

表3. 各原子の電離電圧と電離に必要な光子数

	Η	0	Na	Cl	
Ionization potential [eV]		13.60	13.62	5.14	12.97
photon number	1064[nm]	12	12	5	12
	532[nm]	6	6	3	6

そのため、初期電子は気体を構成する原子や分子の束縛 電子が多数の光子を同時に吸収してイオン化が起こる多 光子吸収過程で供給される。多光子電離過程によって生 じた初期電子は、逆制動放吸収過程によって加速される。 そして、その加速された電子がつぎつぎと中性粒子と衝 突し、衝突電離を繰り返すカスケード電離過程によって プラズマが生成される。

3·2 成長過程

液体中に生成されたレーザプラズマの成長過程には、 Breakdown Wave による成長過程と Radiation Supported Shock Wave による成長過程の2つがあると考えられる。

ここで、Breakdown Wave は絶縁破壊の時間遅れにとも なってプラズマが成長するメカニズムである。すなわち、 レーザパワーがピークに達する前に焦点において絶縁破 壊が起こったとすると、プラズマ化領域は光子をほぼ 100%吸収し、ライトコーン内で焦点後方に成長する。

一方、レーザを集光照射すると、焦点付近において絶 縁破壊が起こることによって圧力が高まるため Shock wave が起こる。この Shock wave は周囲の液体による冷 却のため成長はすぐに抑えられる。しかし、焦点後方で はレーザ光照射により膨張し続ける。したがって、 Radiation Supported Shock Wave とは、この Shock Wave でプラズマが成長する流体力学的な成長である。

<u>4. 電子密度</u>

4·1 電子密度測定方法

電子密度測定装置を図1に概略的に示す。液体レーザ プラズマの電子密度は、アルゴンイオンレーザをプロー ブレーザとした、マッハツェンダー干渉計を構成するこ とによって測定した。ここで、このプローブレーザはス プリッタを用いて、プラズマ中を透過する透過光と空気 中を伝搬する参照光とに分割させている。したがって、 これらの分割させたレーザ光を分光器のスリット上で干 渉させることにより、その位相差から電子密度を測定し た。ここで、アルゴンイオンレーザは波長488nm、出力 数 mW で発振し、分光器は焦点距離 1m、分解能 0.016nm の平面回折格子分光器を用いた。

図1. 電子密度測定装置

レーザ光が屈折率µのプラズマ中を伝搬するとき、その伝搬方向をx座標と置き、プラズマの厚さをLとする と透過光と参照光の位相差F_Lは次式で与えられ、電子密 度は光路に沿っての積分値を得ることになる。

$$F_L = \frac{1}{\lambda} \int_0^L (1-\mu) dx \cdots (1)$$

ここで、λはプローブレーザ光の波長を示す。また、電 子密度の光軸方向の密度分布は、集光レンズと容器を XY ステージに載せ、光軸方向に前後に動かすことによ り求めた。 オシロスコープで観測した干渉波形の例を図 2 に示 す。ここで、波形の最初の部分ではプラズマによってプ ローブレーザ光の大部分が吸収・散乱されるため干渉波 形は観測されない。しかし、レーザパルス照射後は拡散 によってプラズマが広がり、密度が減少していくためレ ーザ光の光強度が増加する。その結果、図2のような信 号が観測される。

また、電子密度が最大時の位相変化量は波形の最初の部 分が観測されないため、時間が十分に経過し、干渉波形 の振動が収まったとされる点からフリンジの数をプロッ トして外挿することにより求めた。これにより、電子密 度が最大時のフリンジ数 *F*_Lが求められる。ここで、外挿 した例を図3に示す。

次に、媒質中を通るプローブレーザ光の光路長 L について示す。光路長 L は YAG レーザのスポット径 r とレ

ーザ光の理論的拡がりから求められる。ここで、図4に 半径ωのガウシアンビームが焦点距離fのレンズで集光 された時の理論図を示す。

図 4. ガウシアンビーム理論図

図より光路長 *L* は理論曲線の傾きと YAG レーザのスポット径から以下の式で求められる。

$$L = 2\left\{r + \left|x\right|\left(\frac{\omega - r}{f}\right)\right\}\cdots(2)$$

したがって、電子密度 n_e は位相変化量 F_L と光路長 L を 求めることにより以下の式で求められる。

$$n_e = 2.18 \times 10^{15} \frac{F_L}{L\lambda} \cdots (3)$$

4·2 電子密度測定結果

図5にNaCl 濃度0%のときの各光強度における電子密 度測定結果を示す。ここで、横軸はプラズマが最初に出 来た位置を0とした光軸方向の測定位置を示し、縦軸が 電子密度の値となっている。また、焦点位置からレーザ の進行方向を前方とし、逆方向を後方としている。

図5より、発振波長1064nm、532nmともに10²⁵m⁻³程 度と高密度なプラズマが生成されたことが分かる。また、 電子密度は焦点付近で最大となり、前方・後方とも焦点 から離れるにしたがって減少する傾向にある。

また、前方に対し後方へは広い範囲で電子密度が観測 されている。これは、エネルギーの供給による Breakdown Wave 成長過程によってプラズマが後方成長したためで ある。このため、532nm のときでは光強度が低くなると 後方ではあまり観測されず、電子密度分布は焦点付近を 境に対称的になった。

一方、1064nm のときには低い光強度でも広い範囲で 電子密度が観測された。この要因として、1064nm のと きではプラズマ生成の起因となる種が焦点以外でも出来 ることが確認されており、結果として、このように広く なったと考えられる。

図 5. NaCl 濃度 0%における電子密度分布

次に、図6に発振波長1064nm・NaCl 濃度を6%、24% としたときの電子密度分布を示す。NaCl が加えられたこ とによってプラズマが出来やすくなったため、より低い 光強度でもプラズマが生成され、電子密度を測定するこ とが出来た。また、6%と24%のときの密度分布を比較し てみると、24%のほうが後方においてより広く観測され ている。これは NaCl 濃度の増加にともなってプラズマ が出来やすくなったことが要因として考えられる。

しかし、電子密度は波長・NaCl 濃度・光強度によらず 全体的に 10²⁵m⁻³程度であった。

因 0. Huer 版及 0/0、 2H/Helloth 3 电 1 田及方

5. 電子温度測定方法

電子温度測定装置を図7に示す。ここで、液体レーザ プラズマの電子密度は 10²⁵m⁻³ と高密度であることから 衝突過程が放射過程に比べて無視できると考えられるた め、局所熱平衡が成り立つと考えられる。そこで、局所 熱平衡が成り立つとき、電子温度は以下の式を用いて、 線スペクトル強度比より求められる。

$$\ln(\frac{I_{21}\lambda_{21}}{g_2A_{21}}) = -\frac{E_2}{kT_e} + C\cdots(4)$$

ここで、 I_{21} は発光強度、 g_2 は統計的重み、 A_{21} は遷移確 率、 E_2 は上準位エネルギーレベル、 T_e は電子温度、kは ボルツマン定数、Cは定数である。

したがって、電子温度はプラズマからの発光を分光測 定し、(4)式を用いて求めた。分光測定は生成されたプラ ズマからの発光を焦点距離 100mm のリレーレンズを用 いて分光器のスリット上で結像した。

また、スペクトル分布は観測された分光波形のピーク 値を 240nm~850nm の波長範囲で 0.1nm ごと測定を 行うことによって得た。

図 7. 電子温度測定装置

そこで、図8にNaCl濃度0%におけるスペクトル分布 を示す。図の中心付近に強く現れている発光ラインは 532nm 付近にあることから YAG レーザからの散乱光で あると考えられる。

図8より連続光上に多くの発光ラインが観測された。 これらのラインは主に水素原子と酸素原子からの発光ラ インが観測されたと考えられる。そこで、酸素原子から の発光ラインを同定し、線スペクトル強度比より求める。

表 4. 酸素原子の発光ライン

λ ₂₁ [nm]	E ₁ [eV]	E ₂ [eV]	g ₂	$A_{21}[sec^{-1}]$
386.9	12.88	16.11	15	3.26E+05
435.1	9.52	12.36	9	6.60E+05
628.5	14.1	16.08	27	6.30E+06
676.3	9.14	10.99	1	6.00E+07
725.6	10.99	12.7	3	6.20E+06
749.3	14.12	15.78	15	4.08E+07
775.3	9.14	10.74	15	3.40E+07
799.9	10.99	12.54	21	3.73E+07
822.0	12.54	14.05	15	3.23E+07
845.0	9.52	1099	9	2 80E+07

図 9. 酸素原子の発光ラインから得られた 線スペクトル強度比

ここで、表4に同定された酸素原子のエネルギー準位、 統計的重み、遷移確率を示す。^{3)、4)}よってこれらより、 図9に横軸に同定された酸素原子ラインの上準位のエネ ルギーレベルを表した線スペクトル強度比を示す。した がって、電子温度を図9に示した直線の傾きより求める と約3.5×10⁴K 程度となった。

<u>6. まとめ</u>

本研究では、レーザを用いて液体中に生成されたレー ザプラズマの基礎的な物理量である電子密度と電子温度 について求め、液体レーザプラズマの物性の解明を目指 した。

電子密度は、マッハツェンダー干渉計を構成し、プラ ズマ中を透過する透過光と空気中を伝搬する参照光の位 相差から求めた。また、集光レンズと液体を入れる容器 をXステージに載せることで光軸方向の密度分布を求め た。結果として、電子密度は 10²⁵m³程度と高密度であり、 焦点付近で最大となることが分かった。そして、焦点か ら離れるにしたがって減少する傾向にあった。

また、光強度が低いときでは焦点を境に前方・後方で 対称的となったが、光強度が高くなるとプラズマの後方 成長にともなって後方で広く測定された。

ここで、完全電離プラズマでは問題とならないが、そう でない場合、中性原子の屈折率が測定結果に影響を及ぼ している可能性がある。そこで、単一波長から測定した 屈折率からは中性原子の密度と電子密度とを分離して決 定することが出来ないため、2 つの異なる波長のプロー ブレーザを用いる必要があると考えられる。

次に、電子温度はプラズマからの発光を分光分析し、 線スペクトル強度比より求めた。プラズマからの発光を リレーレンズを用いて、分光器のスリット上へ結像し、 240nm~850nm の範囲で 0.1nm ずつ測定することにより スペクトル分布を得た。

その結果、連続光上に多くの発光ラインが観測され、 水素原子および酸素原子からの発光ラインが同定され た。そこで、酸素原子から同定されたラインから線スペ クトル強度比を用いて電子温度を求めたところ約 3.5× 10⁴K 程度であった。 参考文献

- Norio Tsuda, Jun Yamada: "Observation of forward breakdown mechanism in high pressure argon plasma produced by irradiation by an excimer laser. J.Appl.Phys,Vol.81,No.2, pp.582-586(1997-2)
- Jun Yamada, Norio Tsuda, Yoshiyuki Uchida, Hideo Huruhashi, Toshio Sahashi: "Development Mechanism of High Pressure Argon Plasma Produced by Irradiation of Excimer Laser" T.IEE Japan, Vol.114-A,No4, pp.303-308 (1994-4)

3) W. L. Wiese, M.W. Smith, and B. M. Glennon :

Atomic Transition Probabilities Volume I Hydrogen Through Neon, Institute for Basic Standards, National Bureau of Standards, Washington, D. C.

 W. L. Wiese, M.W. Smith, and B. M. Miles : Atomic Transition Probabilities Volume II Sodium Through Calcium, Institute for Basic Standards, National Bureau of Standards, Washington, D. C.

(受理 平成 20 年 3 月 19 日)